2019-11-11

我给你讲个故事吧!

从前有一棵树叫“高数”上面挂了很多人 ……很久很久以前,在拉格朗日(Lagrange)照耀下,有几座城:分别是常微分方城(常微分方程)和偏微分方城(偏微分方程)这两座兄弟城,还有数理方城(数理方程)、随机过城(随机过程)。从这几座城里流出了几条溪,比较著名的有:柯溪(Cauchy)、数学分溪(数学分析)、泛函分溪(泛函分析)、回归分溪(回归分析)、时间序列分溪(时间序列分析)等。其中某几条溪和支流汇聚在一起,形成了解析几河(解析几何)、微分几河(微分几何)、黎曼几河(黎曼几何)三条大河。

河边有座古老的海森堡(Heisenberg),里面生活着亥霍母子(Helmholtz),穿着德布罗衣(de Broglie)、卢瑟服(Rutherford)、门捷列服(Mendeleev),这样就不会被开尔蚊(Kelvin)骚扰,被河里的薛定鳄(Schrödinger)咬伤。城堡门口两边摆放着牛墩(Newton)和道尔墩(Dalton),出去便是鲍林(Pauling)。鲍林(Pauling)里面的树非常多:有高等代树(高等代数)、抽象代树(抽象代数)、线性代树(线性代数)、实变函树(实变函数)、复变函树(复变函数)、数值代树(数值代数)等,还有长满了傅立叶(Fourier),开满了范德花(Van del Waals)的级树(级数)......人们专门在这些树边放了许多的盖桶(概统)、高桶(高统),这是用来放尸体的,因为,挂在上面的人,太多了,太多了......

这些人死后就葬在微积坟(微积分),坟的后面是一片广阔的麦克劳林(Maclaurin),林子里有一只费马(Fermat),它喜欢在柯溪(Cauchy)喝水,溪里撒着用高丝(Gauss)做成的ε-网,有时可以捕捉到二次剩鱼(二次剩余)。后来,芬斯勒几河(Finsler几何)改道,几河(几何)不能同调,工程师李群(Lie群)不得不微分流形,调河分溪(调和分析)。几河分溪(几何分析)以后,水量大涨,建了个测渡(测度)也没有效果,还是挂了很多人,连非交换代树(非交换代数)都挂满了,不得不弄到动力系桶(动力系统)里扔掉。有些人不想挂在树上,索性投入了数值逼井(数值逼近)。结果投井的人发现井下生活着线性回龟(线性回归)和非线性回龟(非线性回归)两种龟:前一种最为常见的是简单线性回龟(简单线性回归)和多元线性回龟(多元线性回归),它们都喜欢吃最小二橙(最小二乘)。

柯溪经过不等市,渐近县和极县,这里房子的屋顶都是用伽罗瓦盖的,人们的主食是无穷小粮。

极县旁有一座道观叫线性无观,线性无观里有很多道士叫做多项士,道长比较二,也叫二项士。线性无观旁有一座庙叫做香寺,长老叫做满志,排出咀阵,守卫着一座塔方。一天二项士拎着马尔可夫链来踢馆,满志曰:“正定!正定!吾级数太低,愿以郑太求和,道友合同否?”二项士惊呼:“特真值啊!”立退。不料满志此人置信度太低,不以郑太求和,却要郑太回归。二项式大怒在密度函树下展开标准分布,布里包了两个钗钗,分别是标准钗和方钗。满志见状央(鞅)求饶命。二项式将其关到希尔伯特空间,命巴纳赫看守。后来,巴纳赫让其付饭钱,满志念已缴钱便贪多吃,结果在无参树下被噎死(贝叶斯)。

听完是不是感觉好了很多?(手动狗头)

你可能感兴趣的:(2019-11-11)