CV 图像分类常见的 36 个模型

来源:新机器视觉
链接:https://mp.weixin.qq.com/s/NY0ditoxAI7x1ji4LQxWgg

今天给大家介绍自 2014 年以来,计算机视觉 CV 领域图像分类方向文献和代码的超全总结和列表!总共涉及 36 种 ConvNet 模型。该 GitHub 项目作者是 weiaicunzai,项目地址是:

https://github.com/weiaicunzai/awesome-image-classification

背景

我相信图像识别是深入到其它机器视觉领域一个很好的起点,特别是对于刚刚入门深度学习的人来说。当我初学 CV 时,犯了很多错。我当时非常希望有人能告诉我应该从哪一篇论文开始读起。到目前为止,似乎还没有一个像 deep-learning-object-detection 这样的 GitHub 项目。因此,我决定建立一个 GitHub 项目,列出深入学习中关于图像分类的论文和代码,以帮助其他人。

对于学习路线,我的个人建议是,对于那些刚入门深度学习的人,可以试着从 vgg 开始,然后是 googlenet、resnet,之后可以自由地继续阅读列出的其它论文或切换到其它领域。

性能表

基于简化的目的,我只从论文中列举出在 ImageNet 上准确率最高的 top1 和 top5。注意,这并不一定意味着准确率越高,一个网络就比另一个网络更好。因为有些网络专注于降低模型复杂性而不是提高准确性,或者有些论文只给出 ImageNet 上的 single crop results,而另一些则给出模型融合或 multicrop results。

关于性能表的标注:

  • ConvNet:卷积神经网络的名称

  • ImageNet top1 acc:论文中基于 ImageNet 数据集最好的 top1 准确率

  • ImageNet top5 acc:论文中基于 ImageNet 数据集最好的 top5 准确率

  • Published In:论文发表在哪个会议或期刊

image

论文&代码

1. VGG

Very Deep Convolutional Networks for Large-Scale Image Recognition.

Karen Simonyan, Andrew Zisserman

pdf: https://arxiv.org/abs/1409.1556

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg16.py

**code: keras-applications : **

https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg19.py

2. GoogleNet

**Going Deeper with Convolutions **

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich

pdf: https://arxiv.org/abs/1409.4842

code: unofficial-tensorflow :

https://github.com/conan7882/GoogLeNet-Inception

**code: unofficial-caffe : **

https://github.com/lim0606/caffe-googlenet-bn

**3. PReLU-nets **

**Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification **

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf: https://arxiv.org/abs/1502.01852

**code: unofficial-chainer : **

https://github.com/nutszebra/prelu_net

**4. ResNet **

Deep Residual Learning for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf: https://arxiv.org/abs/1512.03385

code: facebook-torch :

https://github.com/facebook/fb.resnet.torch

**code: torchvision : **

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

**code: keras-applications : **

https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnet.py

code: unofficial-keras :

https://github.com/raghakot/keras-resnet

**code: unofficial-tensorflow : **

https://github.com/ry/tensorflow-resnet

**5. PreActResNet **

**Identity Mappings in Deep Residual Networks **

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

pdf: https://arxiv.org/abs/1603.05027

code: facebook-torch :

https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua

**code: official : **

https://github.com/KaimingHe/resnet-1k-layers

code: unoffical-pytorch :

https://github.com/kuangliu/pytorch-cifar/blob/master/models/preact_resnet.py

**code: unoffical-mxnet : **

https://github.com/tornadomeet/ResNet

6. Inceptionv3

**Rethinking the Inception Architecture for Computer Vision **

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna

**pdf: **https://arxiv.org/abs/1512.00567

code: torchvision :

https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py

code: keras-applications :

https://github.com/keras-team/keras-applications/blob/master/keras_applications/inception_v3.py

**7. Inceptionv4 && Inception-ResNetv2 **

**Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning **

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi

**pdf: **https://arxiv.org/abs/1602.07261

**code: unofficial-keras : **

https://github.com/kentsommer/keras-inceptionV4

**code: unofficial-keras : **

https://github.com/titu1994/Inception-v4

**code: unofficial-keras : **

https://github.com/yuyang-huang/keras-inception-resnet-v2

8. RIR

**Resnet in Resnet: Generalizing Residual Architectures **

Sasha Targ, Diogo Almeida, Kevin Lyman

pdf: https://arxiv.org/abs/1603.08029

**code: unofficial-tensorflow : **

https://github.com/SunnerLi/RiR-Tensorflow

**code: unofficial-chainer : **

https://github.com/nutszebra/resnet_in_resnet

**9. Stochastic Depth ResNet **

**Deep Networks with Stochastic Depth **

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger

pdf: https://arxiv.org/abs/1603.09382

**code: unofficial-torch : **

https://github.com/yueatsprograms/Stochastic_Depth

**code: unofficial-chainer : **

https://github.com/yasunorikudo/chainer-ResDrop

**code: unofficial-keras : **

https://github.com/dblN/stochastic_depth_keras

**10. WRN **

**Wide Residual Networks **

Sergey Zagoruyko, Nikos Komodakis

pdf: https://arxiv.org/abs/1605.07146

**code: official : **

https://github.com/szagoruyko/wide-residual-networks

**code: unofficial-pytorch : **

https://github.com/xternalz/WideResNet-pytorch

**code: unofficial-keras : **

https://github.com/asmith26/wide_resnets_keras

**code: unofficial-pytorch : **

https://github.com/meliketoy/wide-resnet.pytorch

**11. squeezenet **

**SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size **

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer

pdf: https://arxiv.org/abs/1602.07360

**code: torchvision : **

https://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py

**code: unofficial-caffe : **

https://github.com/DeepScale/SqueezeNet

**code: unofficial-keras : **

https://github.com/rcmalli/keras-squeezenet

**code: unofficial-caffe : **

https://github.com/songhan/SqueezeNet-Residual

**12. GeNet **

**Genetic CNN **

Lingxi Xie, Alan Yuille

**pdf: **https://arxiv.org/abs/1703.01513

**code: unofficial-tensorflow : **

https://github.com/aqibsaeed/Genetic-CNN

**12. MetaQNN **

Designing Neural Network Architectures using Reinforcement Learning

Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar

pdf: https://arxiv.org/abs/1703.01513

code: official : https://github.com/bowenbaker/metaqnn

**13. PyramidNet **

**Deep Pyramidal Residual Networks **

Dongyoon Han, Jiwhan Kim, Junmo Kim

pdf: https://arxiv.org/abs/1610.02915

**code: official : **

https://github.com/jhkim89/PyramidNet

**code: unofficial-pytorch : **

https://github.com/dyhan0920/PyramidNet-PyTorch

**14. DenseNet **

**Densely Connected Convolutional Networks **

Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

**pdf: **https://arxiv.org/abs/1608.06993

**code: official : **

https://github.com/liuzhuang13/DenseNet

**code: unofficial-keras : **

https://github.com/titu1994/DenseNet

**code: unofficial-caffe : **

https://github.com/shicai/DenseNet-Caffe

**code: unofficial-tensorflow : **

https://github.com/YixuanLi/densenet-tensorflow

**code: unofficial-pytorch : **

https://github.com/YixuanLi/densenet-tensorflow

**code: unofficial-pytorch : **

https://github.com/bamos/densenet.pytorch

**code: unofficial-keras : **

https://github.com/flyyufelix/DenseNet-Keras

**15. FractalNet **

**FractalNet: Ultra-Deep Neural Networks without Residuals **

**Gustav Larsson, Michael Maire, Gregory Shakhnarovich **

**pdf: **https://arxiv.org/abs/1605.07648

**code: unofficial-caffe : **

https://github.com/gustavla/fractalnet

**code: unofficial-keras : **

https://github.com/snf/keras-fractalnet

**code: unofficial-tensorflow : **

https://github.com/tensorpro/FractalNet

**16. ResNext **

**Aggregated Residual Transformations for Deep Neural Networks **

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, Kaiming He

pdf: https://arxiv.org/abs/1611.05431

**code: official : **

https://github.com/facebookresearch/ResNeXt

**code: keras-applications : **

https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnext.py

**code: unofficial-pytorch : **

https://github.com/prlz77/ResNeXt.pytorch

**code: unofficial-keras : **

https://github.com/titu1994/Keras-ResNeXt

**code: unofficial-tensorflow : **

https://github.com/taki0112/ResNeXt-Tensorflow

**code: unofficial-tensorflow : **

https://github.com/wenxinxu/ResNeXt-in-tensorflow

**17. IGCV1 **

**Interleaved Group Convolutions for Deep Neural Networks **

Ting Zhang, Guo-Jun Qi, Bin Xiao, Jingdong Wang

pdf: https://arxiv.org/abs/1707.02725

**code official : **

https://github.com/hellozting/InterleavedGroupConvolutions

**18. Residual Attention Network **

**Residual Attention Network for Image Classification **

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang

**pdf: **https://arxiv.org/abs/1704.06904

**code: official : **

https://github.com/fwang91/residual-attention-network

**code: unofficial-pytorch : **

https://github.com/tengshaofeng/ResidualAttentionNetwork-pytorch

**code: unofficial-gluon : **

https://github.com/PistonY/ResidualAttentionNetwork

**code: unofficial-keras : **

https://github.com/koichiro11/residual-attention-network

**19. Xception **

Xception: Deep Learning with Depthwise Separable Convolutions

**François Chollet **

**pdf: **https://arxiv.org/abs/1610.02357

**code: unofficial-pytorch : **

https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/backbone/xception.py

**code: unofficial-tensorflow : **

https://github.com/kwotsin/TensorFlow-Xception

**code: unofficial-caffe : **

https://github.com/yihui-he/Xception-caffe

**code: unofficial-pytorch : **

https://github.com/tstandley/Xception-PyTorch

**code: keras-applications : **

https://github.com/keras-team/keras-applications/blob/master/keras_applications/xception.py

**20. MobileNet **

**MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications **

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam

**pdf: **https://arxiv.org/abs/1704.04861

**code: unofficial-tensorflow : **

https://github.com/Zehaos/MobileNet

**code: unofficial-caffe : **

https://github.com/shicai/MobileNet-Caffe

**code: unofficial-pytorch : **

https://github.com/marvis/pytorch-mobilenet

**code: keras-applications : **

https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet.py

**21. PolyNet **

PolyNet: A Pursuit of Structural Diversity in Very Deep Networks

Xingcheng Zhang, Zhizhong Li, Chen Change Loy, Dahua Lin

pdf: https://arxiv.org/abs/1611.05725

**code: official : **

https://github.com/open-mmlab/polynet

**22. DPN **

**Dual Path Networks **

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng

**pdf: **https://arxiv.org/abs/1707.01629

**code: official : **

https://github.com/cypw/DPNs

**code: unoffical-keras : **

https://github.com/titu1994/Keras-DualPathNetworks

**code: unofficial-pytorch : **

https://github.com/oyam/pytorch-DPNs

**code: unofficial-pytorch : **

https://github.com/rwightman/pytorch-dpn-pretrained

**23. Block-QNN **

Practical Block-wise Neural Network Architecture Generation

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, Cheng-Lin Liu

**pdf: **https://arxiv.org/abs/1708.05552

**24. CRU-Net **

**Sharing Residual Units Through Collective Tensor Factorization in Deep Neural Networks **

Chen Yunpeng, Jin Xiaojie, Kang Bingyi, Feng Jiashi, Yan Shuicheng

pdf: https://arxiv.org/abs/1703.02180

**code official : **

https://github.com/cypw/CRU-Net

**code unofficial-mxnet : **

https://github.com/bruinxiong/Modified-CRUNet-and-Residual-Attention-Network.mxnet

**25. ShuffleNet **

**ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices **

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun

**pdf: **https://arxiv.org/abs/1707.01083

**code: unofficial-tensorflow : **

https://github.com/MG2033/ShuffleNet

**code: unofficial-pytorch : **

https://github.com/jaxony/ShuffleNet

**code: unofficial-caffe : **

https://github.com/farmingyard/ShuffleNet

**code: unofficial-keras : **

https://github.com/scheckmedia/keras-shufflenet

**26. CondenseNet **

CondenseNet: An Efficient DenseNet using Learned Group Convolutions

Gao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger

**pdf: **https://arxiv.org/abs/1711.09224

**code: official : **

https://github.com/ShichenLiu/CondenseNet

**code: unofficial-tensorflow : **

https://github.com/markdtw/condensenet-tensorflow

**27. NasNet **

Learning Transferable Architectures for Scalable Image Recognition

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le

pdf: https://arxiv.org/abs/1707.07012

**code: unofficial-keras : **

https://github.com/titu1994/Keras-NASNet

**code: keras-applications : **

https://github.com/keras-team/keras-applications/blob/master/keras_applications/nasnet.py

**code: unofficial-pytorch : **

https://github.com/wandering007/nasnet-pytorch

**code: unofficial-tensorflow : **

https://github.com/yeephycho/nasnet-tensorflow

**28. MobileNetV2 **

**MobileNetV2: Inverted Residuals and Linear Bottlenecks **

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen

**pdf: **https://arxiv.org/abs/1801.04381

**code: unofficial-keras : **

https://github.com/xiaochus/MobileNetV2

**code: unofficial-pytorch : **

https://github.com/Randl/MobileNetV2-pytorch

**code: unofficial-tensorflow : **

https://github.com/neuleaf/MobileNetV2

**29. IGCV2 **

IGCV2: Interleaved Structured Sparse Convolutional Neural Networks

**Guotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai, Richang Hong, Guo-Jun Qi **

pdf: https://arxiv.org/abs/1804.06202

**30. hier **

**Hierarchical Representations for Efficient Architecture Search **

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu

**pdf: **https://arxiv.org/abs/1711.00436

**31. PNasNet **

**Progressive Neural Architecture Search **

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy

**pdf: **https://arxiv.org/abs/1712.00559

**code: tensorflow-slim : **

https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/pnasnet.py

**code: unofficial-pytorch : **

https://github.com/chenxi116/PNASNet.pytorch

**code: unofficial-tensorflow : **

https://github.com/chenxi116/PNASNet.TF

**32. AmoebaNet **

**Regularized Evolution for Image Classifier Architecture Search **

Esteban Real, Alok Aggarwal, Yanping Huang, Quoc V Le

**pdf: **https://arxiv.org/abs/1802.01548

**code: tensorflow-tpu : **

https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net

**33. SENet **

**Squeeze-and-Excitation Networks **

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu

pdf: https://arxiv.org/abs/1709.01507

code: official :

https://github.com/hujie-frank/SENet

**code: unofficial-pytorch : **

https://github.com/moskomule/senet.pytorch

**code: unofficial-tensorflow : **

https://github.com/taki0112/SENet-Tensorflow

**code: unofficial-caffe : **

https://github.com/shicai/SENet-Caffe

**code: unofficial-mxnet : **

https://github.com/bruinxiong/SENet.mxnet

**34. ShuffleNetV2 **

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun

pdf: https://arxiv.org/abs/1807.11164

**code: unofficial-pytorch : **

https://github.com/Randl/ShuffleNetV2-pytorch

**code: unofficial-keras : **

https://github.com/opconty/keras-shufflenetV2

**code: unofficial-pytorch : **

https://github.com/Bugdragon/ShuffleNet_v2_PyTorch

**code: unofficial-caff2: **

https://github.com/wolegechu/ShuffleNetV2.Caffe2

**35. IGCV3 **

**IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks **

Ke Sun, Mingjie Li, Dong Liu, Jingdong Wang

**pdf: **https://arxiv.org/abs/1806.00178

**code: official : **

https://github.com/homles11/IGCV3

**code: unofficial-pytorch : **

https://github.com/xxradon/IGCV3-pytorch

code: unofficial-tensorflow :

https://github.com/ZHANG-SHI-CHANG/IGCV3

  1. MNasNet

MnasNet: Platform-Aware Neural Architecture Search for Mobile

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Quoc V. Le

pdf: https://arxiv.org/abs/1807.11626

  • code: unofficial-pytorch :

https://github.com/AnjieZheng/MnasNet-PyTorch

  • code: unofficial-caffe :

https://github.com/LiJianfei06/MnasNet-caffe

  • code: unofficial-MxNet :

https://github.com/chinakook/Mnasnet.MXNet

  • code: unofficial-keras :

https://github.com/Shathe/MNasNet-Keras-Tensorflow

声明:部分内容来源于网络,仅供读者学术交流之目的。文章版权归原作者所有。如有不妥,请联系删除。

你可能感兴趣的:(CV 图像分类常见的 36 个模型)