- Struts2 架构
段远山
Struts2javaspringmvcstruts2python
Struts2是一个MVC拉动的(或MVC2)框架,Struts2的模型-视图-控制器模式是通过以下五个核心部分进行实现的:操作(Actions)拦截器(Interceptors)值栈(ValueStack)/OGNL结果(Result)/结果类型视图技术而Struts2与传统的MVC框架略有不同,因为它由Action扮演模型的角色,而不是控制器,虽然这样会有一些重叠。上图描述了Struts2高级
- ssh创建密钥ansible批量分发
liujiangxu
linuxsshlinux
ssh-keygen命令用于为“ssh”生成、管理和转换认证密钥,它支持RSA和DSA两种认证密钥SSH密钥默认保留在~/.ssh目录中id_rsa:私钥文件id_rsa.pub:公钥文件known_hosts:ssh访问不同的主机会将公钥记录到此文件,每次访问会核对密钥创建ssh密钥[root@ceshi-128~]#ssh-keygen-trsaGeneratingpublic/private
- 用 Neo4j GraphRAG 工具开启你的智能应用之旅
步子哥
AGI通用人工智能neo4j人工智能
在这个人工智能飞速发展的时代,Neo4j带来了一项令人激动的创新——GraphRAG生态系统工具。这组开源工具为开发人员提供了一个全新的途径,以构建基于知识图谱的智能应用,让机器更好地理解和回应我们的查询。接下来,让我们一起探索这些工具如何帮助我们构建更智能、更准确的应用。什么是GraphRAG?GraphRAG是一种结合了检索增强生成(RAG)技术和知识图谱的解决方案。它不仅解决了大型语言模型常
- coxphfit+matlab,计算Cox比例风险模型的coxph和cph函数有什么区别?
Mandy Liu
coxphfit+matlab
RCS=受限立方样条。您可以通过查看help(package="rms")找到函数的帮助文件下面是源代码的摘录,所以你可以看到那里的cph函数调用coxph.fit功能(的coxph在survival包胆量)>cph[...]if(nullmod)f=NULLelse{ytype=attr(Y,"type")fitter=if(method=="breslow"||method=="efron")
- 数据包的发送流程
sumatch
网络
以绿皮聊天软件为例:首先,我们两个手机的绿皮聊天软件客户端,要通信,中间会通过它们家服务器。大概长这样。但为了简化模型,我们把中间的服务器给省略掉,假设这是个端到端的通信。且为了保证消息的可靠性,我们盲猜它们之间用的是TCP协议进行通信。为了发送数据包,两端首先会通过三次握手,建立TCP连接。一个数据包,从聊天框里发出,消息会从聊天软件所在的用户空间拷贝到内核空间的发送缓冲区(sendbuffer
- DeepSeek R1模型基于ollama部署
&Dirac
机器学习笔记python语言模型nlp
DeepSeekR1模型基于ollama部署1、安装部署ollama(windows)2、在ollama中使用deepseekr13、问答示例4、python调用接口5、ollama常用命令1、安装部署ollama(windows)Ollama是一个专为本地机器设计的开源框架,旨在简化大型语言模型(LLM)的部署和运行过程。它提供了一套工具和命令,使用户能够轻松地下载、管理和运行各种语言模型,包括
- 预训练语言模型
Algorithm_Engineer_
基础知识和深度学习语言模型人工智能自然语言处理
一.预训练模型的基本介绍预训练模型是一种在大规模数据上训练而得的模型,通常通过无监督学习或自监督学习的方式进行。在预训练阶段,模型被训练来学习数据的内在表示,而无需标注数据或任务特定的目标函数。这种学习能力使得预训练模型可以捕获数据的复杂结构和特征,并且在后续的特定任务上进行微调,从而提高模型在目标任务上的性能。1.1预训练过程数据收集与处理:收集大规模的数据,并对数据进行预处理,以便模型训练使用
- 探索未来对话的边界:Mixture-of-Agents(MoA)——大型语言模型的集体智慧引擎
潘俭渝Erik
探索未来对话的边界:Mixture-of-Agents(MoA)——大型语言模型的集体智慧引擎项目地址:https://gitcode.com/gh_mirrors/mo/MoA在当前人工智能的浪潮中,我们迎来了一个令人兴奋的技术突破——Mixture-of-Agents(MoA),它标志着大型语言模型(LLM)能力提升的新纪元。本文将引领您深入探索这一革命性项目,揭示其技术精粹,展望应用前景,并
- RPC是什么?
项三城
笔记
RPC概述RPC是什么RPC(RemoteProcedureCall)远程过程调用协议,一种通过网络从远程计算机上请求服务,而不需要了解底层网络技术的协议。RPC它假定某些协议的存在,例如TPC/UDP等,为通信程序之间携带信息数据。在OSI网络七层模型中,RPC跨越了传输层和应用层,RPC使得开发,包括网络分布式多程序在内的应用程序更加容易。过程是什么?过程就是业务处理、计算任务,更直白的说,就
- 为AI聊天工具添加一个知识系统 之72 详细设计之13 图灵机
一水鉴天
软件智能人工语言智能制造人工智能
本文要点要点实际上是要设计一个图灵机,利用λ转换规则和λ演算来定义StringProcessor的发生产规则的转换功能。三种文法型运行图灵机来处理不同的串---符号串,数字串和文字串一个StrIngProcessor,图灵机(利用λ转换规则和λ演算来定义StringProcessor的发生产规则的转换功能),三种串(字符/数字/文字),三种语法公式(term/atom/formula),三种文法型
- 智能工厂的设计软件 应用场景的一个例子:为AI聊天工具添加一个知识系统 之8 重新开始 之1 特定于领域的模板--一个三套接的hoc结构
一水鉴天
软件智能人工语言智能制造人工智能状态模式
由于前面的项目信息全部丢失,所以重新建立了这个项目,并以前一篇文章(之7)中的内容作为项目附件重新沟通。本文要点特定于领域的模板--一个三套接的hoc结构。这是今天讨论的内容。它是本项目actors剧本原型。其地位:祖传代码脚本模板中的--一个div标签的内容模型,在三端架构中描述前端执行公式的“体”性。目的是准备完善出该项目。希望的做法是:我将我给出的附件文档中零散的一些考虑组成出完整的描述文字
- Stable Diffusion:Python图像生成实战指南
AI绘画咪酱
stablediffusionpython人工智能AI作画AIGCai
前言今天要跟大家分享一个特别有趣的话题-如何使用Python和StableDiffusion来生成AI艺术作品。作为一名Python爱好者,我特别喜欢探索AI领域的新技术,而StableDiffusion则是最近特别火热的AI图像生成工具之一。1.StableDiffusion简介与环境配置StableDiffusion是一个强大的AI图像生成模型,它能够根据文字描述生成高质量的图像。在开始实战之
- 人工智能前沿技术进展与应用前景探究
戒了9
人工智能搜索引擎百度
一、引言1.1研究背景与意义人工智能作为一门极具变革性的前沿技术,正深刻地改变着人类社会的各个层面。从其诞生之初,人工智能便承载着人类对智能机器的无限遐想与探索。自20世纪中叶起,人工智能踏上了它的发展征程,历经了多个重要阶段,每一阶段都伴随着理论的突破、技术的革新以及应用领域的拓展。在初级阶段(1943-1956),沃伦・麦卡洛克和沃尔特・皮茨提出的人工神经网络基本模型,为人工智能的发展奠定了初
- 【Java Web】JSON 以及 JSON 转换
一二¬
#JavaWebjavajson
JSON(JavaScriptObjectNotation)一种灵活、高效、轻量级的数据交换格式,广泛应用于各种数据交换和存储场景。基本特点1、简单易用:JSON格式非常简单,易于理解和使用。2、轻量级:相比XML等其他数据格式,JSON占用的空间更小,传输效率更高。3、跨平台:JSON是一种纯文本格式,可以轻松地在不同的系统和编程语言之间交换数据。4、可读性强:JSON格式的数据结构清晰,易于阅
- JVM性能:堆的参数配置
大力海棠
JVMJVM堆参数配置
目录初始堆和最大堆偏差问题新生代配置指定绝对大小Java程序中的最重要的内存空间就是堆了,基本上所有的对象都分配在堆中,这些堆空间根据不同功能和GC回收分配成几种的结构,例如存放新创建对象的新生代,经过多次GC后仍然存活的老年对象则存放在老年代中,新生代区域又分为eden区和from区,to区,通风常在eden区中的新生代经历了一次GC后仍然存活的话,便会进入from区或to区,每一次GC都会让对
- chatGPT底层原理是什么,为什么chatGPT效果这么好?三万字长文深度剖析-中
会写代码的孙悟空
大模型从入门到放弃chatgpt人工智能深度学习机器学习AIGC
导航chatGPT底层原理是什么,为什么chatGPT效果这么好?三万字长文深度剖析-上chatGPT底层原理是什么,为什么chatGPT效果这么好?三万字长文深度剖析-中chatGPT底层原理是什么,为什么chatGPT效果这么好?三万字长文深度剖析-下神经网络那么我们用于图像识别等任务的模型是如何工作的呢?目前最流行且最成功的方法是使用神经网络。神经网络在20世纪40年代就发明了——其形式与现
- Node.js 技术学习指南:从入门到实战应用
小码快撩
node.js
引言Node.js®是一个开源的、跨平台的JavaScript运行环境,它允许开发人员使用JavaScript编写服务器端代码。基于GoogleChrome浏览器强大的V8JavaScript引擎构建,Node.js引入了异步I/O模型和事件驱动编程机制,使得JavaScript能够在服务器环境中高效处理高并发网络请求。一、异步I/O和事件驱动Node.js的异步I/O和事件驱动机制是其高性能的核
- 人工智能前沿技术进展与应用前景探究
戒了9
搜索引擎
一、引言1.1研究背景与意义人工智能作为一门极具变革性的前沿技术,正深刻地改变着人类社会的各个层面。从其诞生之初,人工智能便承载着人类对智能机器的无限遐想与探索。自20世纪中叶起,人工智能踏上了它的发展征程,历经了多个重要阶段,每一阶段都伴随着理论的突破、技术的革新以及应用领域的拓展。在初级阶段(1943-1956),沃伦・麦卡洛克和沃尔特・皮茨提出的人工神经网络基本模型,为人工智能的发展奠定了初
- 探索 Meissonic:文本到图像生成的新星
zhangjiaofa
大模型文生图大模型Meissonic
目录前言模型概述主要功能技术架构应用场景在线体验本地部署克隆存储库创建虚拟环境安装扩散器启动GradioWeb用户界面文本到图像生成结语项目地址一、前言在人工智能迅猛发展的今天,文本到图像生成技术已成为科技前沿的热点。从艺术创作到商业设计,从学术研究到工业应用,这一技术正以惊人的速度改变着我们与数字内容的交互方式。众多研究机构和企业纷纷投入这一领域,不断推动技术的边界。然而,尽管已有许多优秀的模型
- 独立&安全 | 企业选择系统定制化开发的最主要优势
编辑器
随着信息化和互联网的迅猛发展,网络经济给企业带来了巨大的好处。越来越多的企业选择利用第三方平台来建设网店系统,这也导致竞争变得越来越激烈。另一方面,选择定制开发独立商城对企业也有很多好处。这些好处包括以下几点:1.独特性:独立商城的定制开发使得企业的网店与众不同,拥有自己独一无二的风格和特色。这有助于企业在激烈的市场竞争中脱颖而出,并树立自己的品牌形象。2.灵活性:定制开发的独立商城可以根据企业的
- YOLOv9改进,YOLOv9检测头融合ASFF(自适应空间特征融合),全网首发
挂科边缘
YOLOv9改进YOLO目标检测人工智能深度学习计算机视觉
摘要一种新颖的数据驱动的金字塔特征融合策略,称为自适应空间特征融合(ASFF)。它学习了在空间上过滤冲突信息以抑制不一致的方法,从而提高了特征的尺度不变性,并引入了几乎免费的推理开销。#理论介绍目标检测在处理不同尺度的目标时,常采用特征金字塔结构。然而,这种金字塔结构在单步检测器中存在尺度不一致性问题,即不同尺度的特征层在检测过程中可能产生冲突,导致精度下降。ASFF方法通过学习每个尺度特征的自适
- SpringAI基于API对大语言模型调用
_沉浮_
AI语言模型人工智能springAI
引言随着人工智能技术的迅猛发展,大型语言模型(LLM)在各个领域的应用越来越广泛。SpringAI作为一个旨在简化AI集成的框架,为开发者提供了高效、便捷的工具来连接和调用这些大模型。本文将详细探讨如何使用SpringAI整合通义千问等大语言模型,并通过实例演示这一过程,最后提供一些扩展建议。一、SpringAI简介SpringAI是一个专为AI工程设计的应用框架,旨在将Spring生态系统设计原
- 从日程安排到区间合并:探索合并区间问题|LeetCode 56 合并区间
忍者算法_
leetcode算法职场和发展面试跳槽
LeetCode56合并区间点此看全部题解LeetCode必刷100题:一份来自面试官的算法地图(题解持续更新中)更多干货,请关注公众号【忍者算法】,回复【刷题清单】获取完整题解目录~生活中的算法想象你是一位活动策划师,桌上摆着许多便利贴,每张写着不同的活动时间段:9:00-11:00的晨会、10:30-12:00的培训、14:00-16:00的项目汇报、15:00-17:00的团队建设…有些活动
- 使用 PyTorch 实现逻辑回归:从数据到模型保存与加载
弥树子
pytorch逻辑回归人工智能
在机器学习中,逻辑回归是一种经典的分类算法,广泛应用于二分类问题。本文将通过一个简单的示例,展示如何使用PyTorch框架实现逻辑回归模型,从数据准备到模型训练、保存和加载,最后进行预测。1.数据准备逻辑回归的核心是通过学习数据中的特征与标签之间的关系来进行分类。在本示例中,我们手动创建了一个简单的二维数据集,包含两类数据点。第一类数据点的标签为0,第二类数据点的标签为1。class1_point
- [网络通信原理]——OSI模型与TCP/IP模型
牛逼的路上跑了一半
计算机网络tcp/ip网络网络协议运维语言模型
前言在计算机网络领域中,OSI7层模型和TCP/IP模型是两个重要的概念。本文将对这两个模型进行介绍和比较,让大家了解它们的区别和联系。OSI模型与TCP/IP模型前言一、OSI模型1、OSI模型是什么?2、OSI七层模型二、TCP/IP模型三、OSI七层模型与TCP/IP模型的区别总结一、OSI模型1、OSI模型是什么?OSI(OpenSystemInterconnection)参考模型是国际标
- 环境安装与配置:全面了解 Go 语言的安装与设置
m0_74825565
面试学习路线阿里巴巴golang开发语言后端
在学习Go语言之前,首先需要确保开发环境已正确安装和配置。本部分将详细介绍如何在不同平台(Windows、macOS和Linux)上安装Go语言,以及如何进行环境变量配置和工作空间的设置。一、安装Go语言1.Windows安装方法下载Go安装包打开Go官方下载页面。选择适合您系统的安装包(通常是go.windows-amd64.msi)。安装Go下载完成后,双击运行安装程序。按照安装向导的步骤操作
- 奖励模型:解析大语言模型的关键工具
XianxinMao
人工智能
标题:奖励模型:解析大语言模型的关键工具文章信息摘要:奖励模型是理解和审核大语言模型(LLM)的重要工具,通过简单的评估方式提供了模型内部表征和性能的深入洞察。它不仅能静态比较模型表现,还可帮助诊断训练问题,为LLM研究提供独特视角,增强模型开发过程的透明度和可问责性。==================================================详细分析:核心观点:奖励模型是
- 【机器学习】 自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
加德霍克
tensorflow逻辑回归人工智能python作业
一、使用tensorflow框架实现逻辑回归1.数据部分:首先自定义了一个简单的数据集,特征X是100个随机样本,每个样本一个特征,目标值y基于线性关系并添加了噪声。tensorflow框架不需要numpy数组转换为相应的张量,可以直接在模型中使用数据集。2.模型定义部分:方案1:model=tf.keras.Sequential([tf.keras.layers.Dense(1,input_sh
- 计算机网络——OSI和TCP/IP模型
阿常11
计算机网络tcp/ip网络
OSI模型一、OSI模型概述OSI模型是一个理论框架,将网络通信分为七层,旨在提供一个通用的、国际化的网络通信标准,强调分层解耦和协议独立性。其特点如下:严格分层:每层功能明确。协议与实现分离:理论上任何协议可替换。二、OSI模型的七层结构(一)物理层(PhysicalLayer)功能:负责在物理介质传输比特流(0和1),即数据信号。相关设备及信号:网线、光纤、集线器;网卡的电压信号、Wi-Fi的
- 第 1 章 服务架构演进史
沉登c
凤凰架构架构
1.1原始分布式时代调用远程方法面临的问题与解决方案:远程的服务在哪里——服务发现有多少个——负载均衡网络出现分区、超时或服务出错怎么办——熔断、隔离、降级方法的参数与返回结果如何表示——序列化协议信息如何传输——传输协议服务权限如何管理——认证、授权如何保证通信安全——网络安全如何令调用不同机器的服务返回相同的结果——分布式数据一致性1.2单体系统时代单体架构:系统中主要的过程调用都是进程内的,
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号