- 【linux 内存管理】mmap.c文件代码分析do_mmap() 和 do_mmap_pgoff()
ElisabethSissi
leetcodec++linux
mmap.c文件代码分析do_mmap和do_mmap_pgoff当某个程序的映像开始执行时,可执行映像必须装入到进程的虚拟地址空间。如果该进程用到了任何一个共享库,则共享库也必须装入到进程的虚拟地址空间。由此可看出,Linux并不将映像装入到物理内存,相反,可执行文件只是被连接到进程的虚拟地址空间中。随着程序的运行,被引用的程序部分会由操作系统装入到物理内存,这种将映像链接到进程地址空间的方法被
- Python, Java 开发鱼类养殖大全APP
Geeker-2025
pythonjava
开发一个“鱼类养殖大全APP”是一个非常有意义的项目,特别是对于水产养殖从业者、鱼类爱好者和研究人员来说。该APP可以帮助用户了解鱼类的养殖知识、疾病防治、饲料管理、水质监测等内容,并提供个性化的养殖建议。以下是开发该APP的详细思路和技术实现方案,分别针对Python和Java。---###**功能需求分析**1.**鱼类信息展示**:-提供常见鱼类的基本信息(如名称、图片、生活习性、适宜水温、
- 知识蒸馏 vs RLHF:目标函数与收敛分析
从零开始学习人工智能
人工智能
1.知识蒸馏(KnowledgeDistillation)知识蒸馏是一种模型压缩技术,旨在将大型复杂模型(教师模型)的知识迁移到较小的模型(学生模型)中,以提高学生模型的性能。目标函数知识蒸馏的目标函数通常由两部分组成:分类损失(StudentLoss):学生模型的输出与真实标签之间的交叉熵损失,表示为:[Lclassification=CrossEntropy(y,q(1))=−∑i=1Nyil
- 奥威BI多数据源融合分析
qq_43696218
信息可视化
在当今数字化时代,企业数据如同宝藏,而如何有效挖掘并利用这些宝藏,则成为了每个企业都必须面对的挑战。BI(商业智能)数据可视化分析正是解决这一挑战的关键技术之一。在众多BI数据可视化工具中,奥威BI以其对接多数据源、多维度动态分析、智能化可视化分析的功能特点,为众多企业提供了强大的数据支持。一、多数据源的无缝对接奥威BI数据可视化工具在数据集成方面表现出色,它能够轻松对接多种数据源,如金蝶、Exc
- java面试合集
云端源想
java面试开发语言
背景:随着软件行业竞争日益激烈,Java作为最广泛应用的编程语言之一,其开发者在求职过程中面临的面试挑战也日益增大。为了帮助Java程序员更好地准备面试,提升竞争力,我们计划长期更新一个全面、深入的《Java面试合集》专栏。本专栏旨在覆盖从Java基础到高级技术点,以及实战经验分享,为不同层次的Java开发者提供一站式面试资源。《Java面试合集》专栏的设计需要兼顾技术深度、实战场景与行业趋势,采
- Python物联网与传感器数据分析
master_chenchengg
pythonpython办公效率python开发IT
Python物联网与传感器数据分析开场白:连接物理世界与数字宇宙物联网的魅力:让物体开口说话Python:编织万物互联的魔法传感器:感知世界的触角数据捕获:从现实世界到数字领域传感器类型概览:温度、湿度、光照及其他Python与硬件接口:树莓派的奇妙旅程实时数据流:如何捕捉每一刻的变化数据处理:挖掘数字宝藏的秘密数据清洗:让数据焕发光彩数据分析:揭秘模式与趋势异常检测:识别噪声与干扰可视化展示:讲
- XGBoost算法的相关知识
VariableX
机器学习基础算法机器学习
文章目录背景定义损失函数(1)原始目标函数Obj(2)原始目标函数Obj的泰勒展开(3)具体化目标函数的泰勒展开细节(4)求解目标函数中的wjw_jwj最优切分点算法基于分桶的划分策略正则化模型复杂度Shrinkage特征采样和样本采样EarlyStopping缺失值处理优缺点总结背景讲XGBoost之前,先引入一个实际问题,即预测一家人每个人玩游戏的意愿值:如果我们用XGBoost解决这个问题,
- Blender学习方法与技巧
自动化专业爱好者
网络
以下是针对Blender零基础用户的学习教程推荐与高效学习方法总结,结合了多个优质资源整理而成,帮助快速入门:一、Blender学习方法与技巧制定学习计划与目标明确短期目标(如掌握基础操作)和长期目标(如独立完成场景建模),建议每天投入2-3小时系统学习。初期以熟悉界面、快捷键和基础工具为主,逐步过渡到建模、材质和渲染的综合应用。高效利用教程资源视频教程优先:视觉化学习更直观,推荐B站、YouTu
- 区块链与去中心化技术
boring_student
区块链去中心化
区块链与去中心化技术核心进展区块链从加密货币(如比特币)扩展至智能合约和供应链管理。以太坊2.0引入分片技术提升交易吞吐量,而零知识证明(ZKP)增强了隐私保护15。企业级应用如IBM的FoodTrust平台通过区块链追踪农产品全生命周期,减少供应链欺诈1。应用场景数字身份:去中心化身份(DID)系统允许用户自主管理个人数据5。版权保护:NFT技术为数字艺术品提供唯一所有权证明9。跨境支付:Rip
- 市场波动中的风险管理与策略优化
Q3990385023
区块链
市场波动中的风险管理与策略优化在市场交易中,价格的波动性为投资者提供了交易机会,但同时也带来了风险。如何在市场不确定性中进行有效的风险管理,并优化交易策略,是每位交易者都需要思考的问题。本文将探讨市场波动的影响因素、如何通过合理的资金管理降低风险,以及如何利用数据分析提升交易稳定性。一、市场波动的核心影响因素1.供需关系变化市场价格的波动主要受到供需关系的影响。无论是受宏观经济政策影响,还是市场预
- 前端知识点---一行代码检测数据类型(javascript)
*星之卡比*
javascriptjavascript前端原型模式
typeof只能检测基本数据类型和函数,instanceof不能检测基本数据类型如何一句话检测数据类型呢?function_typeof(value){returnObject.prototype.toString.call(value).slice(8,-1).toLowerCase();}结果是一个全为小写的字符串下面来一步一步分析这段代码:原型链解析Object是原型链中最上层的构造函数,但
- 9种Python数据可视化方案,让财务数据焕发生命力
IT小本本
python信息可视化数据分析数据挖掘
想象一下:你即将向董事会展示季度财务报告,面对的是一群已经看过无数PPT的高管。你是选择用普通的柱状图和折线图,还是用能够直观展示收入、支出、利润动态关系的交互式仪表板?本文将通过一个完整的Python财务数据可视化案例,展示如何将枯燥的财务数据转变为直观、动态且富有洞察力的可视化作品。场景:财务分析的可视化挑战李总是一家快速成长的科技公司CFO,每月需要向董事会汇报公司的财务状况。尽管他精通Ex
- 考研数学二:函数、极限与连续知识架构与易错点全解析
竹木有心
考研
一、函数模块易错点与考题预测易错点1:忽略函数定义域的隐含条件例题:设函数(f(x)=\sqrt{\ln(1-x)}+\frac{1}{\sqrt{x+2}}),求定义域。解析:需同时满足:1.1−x>0⇒x0⇒x>−2\begin{aligned}1.&\quad1-x>0\Rightarrowx0\Rightarrowx>-2\end{aligned}1.2.3.1−x>0⇒x0⇒x>−2正解
- PyTorch 模型剪枝实例教程一、非结构化剪枝
小风_
模型压缩与加速pytorchpytorch深度学习人工智能
目录1.导包&定义一个简单的网络2.获取网络需要剪枝的模块3.模块剪枝(核心)4.总结目前大部分最先进的(SOTA)深度学习技术虽然效果好,但由于其模型参数量和计算量过高,难以用于实际部署。而众所周知,生物神经网络使用高效的稀疏连接(生物大脑神经网络balabala啥的都是稀疏连接的),考虑到这一点,为了减少内存、容量和硬件消耗,同时又不牺牲模型预测的精度,在设备上部署轻量级模型,并通过私有的设备
- HarmonyOS NEXT ArkTS布局优化与性能提升指南
架构教育
在ArkTS应用开发中,布局优化和性能提升是确保应用流畅运行的关键。本文将从避免二次布局、优先使用layoutWeight、响应式布局设计、懒加载、优化大型对象更新以及内存管理六个方面,探讨如何优化布局和提升性能。避免不必要的二次布局二次布局通常发生在子元素尺寸或位置发生变化时,导致父容器需要重新计算布局。以下是常见的二次布局场景及优化方法:场景1:动态改变子元素尺寸当子元素的尺寸动态变化时(如字
- 51 单片机指令系统入门
二年级程序员
51单片机单片机嵌入式硬件
目录基本概念讲解一、机器指令二、汇编指令(一)汇编指令的一般格式(二)按字节数分类的指令三、高级指令总结基本概念讲解指令是计算机(或单片机)中CPU能够识别并执行的基本操作命令。指令系统是一台计算机(或单片机)能够执行的全部指令的集合。指令系统的强弱,决定了计算机智能的高低。对于51单片机而言,其指令系统涵盖了数据传送、算术运算、逻辑操作、控制转移、位操作等多种类型的指令。这些指令有机组合,赋予了
- 优化深度学习模型:PyTorch中的模型剪枝技术详解
代码之光_1980
深度学习pytorch剪枝
标题:优化深度学习模型:PyTorch中的模型剪枝技术详解在深度学习领域,模型剪枝是一种提高模型效率和性能的技术。通过剪枝,我们可以去除模型中的冗余权重,从而减少模型的复杂度和提高运算速度,同时保持或甚至提升模型的准确率。本文将详细介绍如何在PyTorch框架中实现模型剪枝,并提供相应的代码示例。1.模型剪枝的基本概念模型剪枝主要分为两种类型:结构化剪枝和非结构化剪枝。结构化剪枝通常指的是剪除整个
- GBase 8c慢日志启用和查询
GBASE数据库
数据库GBASE南大通用sqlGBase
原文链接:https://www.gbase.cn/community/post/3985更多精彩内容尽在南大通用GBase技术社区,南大通用致力于成为用户最信赖的数据库产品供应商。GBase8c可以通过慢日志定位问题、归因诊断分析。慢日志配置和使用方法如下:1、慢日志配置(1)相关GUC参数GBase8c慢日志主要相关配置参数为:enable_stmt_trackon:默认值,启用Full/Sl
- 深度学习中的注意力机制:解锁智能模型的新视角
冰蓝蓝
深度学习深度学习人工智能
在人工智能的快速发展中,深度学习模型已经成为了处理复杂数据和任务的主力军。然而,随着数据量的激增和任务的复杂化,传统的深度学习模型面临着效率和性能的双重挑战。在这样的背景下,注意力机制(AttentionMechanism)应运而生,它不仅提升了模型的处理能力,还为深度学习领域带来了新的研究视角。什么是注意力机制?注意力机制是一种受人类视觉注意力启发的技术,它允许模型在处理大量信息时,能够动态地聚
- LeetCode 3280 将日期转换为二进制表示
雾月55
leetcode算法职场和发展数据结构java
【算法实战】日期转二进制:两种解法的思路与优化(附代码解析)一、问题描述给定一个yyyy-mm-dd格式的日期字符串,要求将年、月、日分别转为无前导零的二进制,并保持year-month-day格式。示例:输入2025-03-15,输出11111101001-11-1111(2025→11111101001,3→11,15→1111)。二、解法一:直接分割转换(新手友好)思路分析分割日期:按-拆分
- Biobank genetic data探析(三)
想摸鱼的生信小白
GWAS自学历程大数据
Biobankgeneticdata探析(三)——GenotypingprocessandsampleQC一.总览Category100313这类数据包含了Affymetrix做Genotypecalling的pipeline的流程信息(后续分析中可能用不到),以及样本质量控制的信息(下游分析中估计是必用了)。二.数据集描述2.1Genotypingprocess查看之后发现这部分不是很重要,毕竟
- C#—【特性详解以及自定义特性和通过反射读取特性】
_Csharp
C#基础-高阶-实战知识点c#开发语言特性反射自定义特性
C#—【特性详解以及自定义特性和通过反射读取特性】目录C#—【特性详解以及自定义特性和通过反射读取特性】介绍:特性可以用于多种用途,包括但不限于:特性的分类:特性的主要用途(举一些直观例子)1.标记代码,让框架自动处理2.数据验证(表单/模型校验)3.控制序列化行为4.生成文档(如API接口说明)5.实现AOP(面向切面编程)为什么用特性而不用其他方法?日常开发中的高频场景一句话总结常见预定义特性
- Python在生物信息学中的应用:基因组学与蛋白质组学
PyTechShare
Python教程-基础python
摘要:本文主要介绍了Python在生物信息学中的应用,特别是在基因组学和蛋白质组学领域。文章详细讲述了各个原理,并以代码实例展示了实际应用。我们将探讨如何利用Python分析基因组数据,解析蛋白质序列,以及进行比对分析等。文章目录1.引言2.分析基因组数据2.1读取和解析FASTA文件2.2基因频率分析2.3代码实例3.蛋白质组学3.1解析蛋白质序列3.2蛋白质序列比对3.3代码实例4.总结1.引
- 文件上传漏洞总结(含原因+防御措施)+白名单+黑名单+内容、头+解析漏洞/修补方案
南部余额
漏洞总结安全漏洞web安全安全
文件上传漏洞简单总结+白名单+黑名单+内容、头+解析漏洞/修补方案问题什么是文件上传漏洞?危害?防御措施?文件上传(验证/绕过)措施?前端js类绕过?后端黑名单绕过特殊解析后缀.htaccess解析大小写绕过点绕过空格绕过::$DATA绕过配合解析漏洞(*待补充)双后缀名绕过白名单绕过MIME绕过%00截断0x00截断0x0a截断内容及其他绕过?文件头检测二次渲染条件竞争突破getimagesiz
- 测试工程师指南:基于需求文档构建本地安全知识库的完整实战
Python测试之道
python测试提效安全知识库python
需求文档是测试工程师日常工作的核心工具,如何快速检索需求文档中的关键信息(文本、表格、图片等),并将其转化为可供AI查询的知识库,是提升工作效率的重要手段。本文将通过对需求文档(docx格式)的处理,详细讲解如何构建一个安全的本地知识库,并通过代码实现具体操作,确保每一步都可落地。一、本地知识库的安全性与连接方案在构建本地知识库时,安全性是首要考虑的因素,尤其是对于需求文档这样的敏感数据。以下是本
- 【技术解密】本地部署 DeepSeek-V3:完整指南
海棠AI实验室
“智元启示录“-AI发展的深度思考与未来展望人工智能深度学习DeepSeek
目录引言运行环境需求下载与安装推理部署总结参考资源引言随着人工智能的快速发展,开源大模型正逐步改变着技术生态。DeepSeek-V3作为最新的开源大模型之一,不仅提供了强大的推理能力,同时也支持本地部署,使开发者可以灵活地进行自定义优化。本文将详细介绍如何在本地部署DeepSeek-V3,涵盖系统要求、安装步骤、模型转换及不同推理框架的应用。1.运行环境需求1.1硬件要求✅NVIDIAGPU(支持
- Matlab GPU加速技术
算法工程师y
matlab开发语言
1.GPU加速简介(1)为什么使用GPU加速?CPU擅长处理逻辑复杂的串行任务,而GPU拥有数千个流处理器,专为并行计算设计。对于大规模矩阵运算、深度学习训练或科学计算等任务,GPU加速可将计算速度提升数十至数百倍。(2)Matlab的GPU支持功能依赖:需安装ParallelComputingToolbox(并行计算工具箱)。硬件要求:支持CUDA的NVIDIAGPU(如Tesla、GeForc
- 鸿蒙 @ohos.animator (动画)
淼学派对
harmonyos华为
鸿蒙@ohos.animator(动画)在鸿蒙Next开发中,@ohos.animator模块提供了强大的动画功能,支持属性动画、帧动画等多种动画效果。通过@ohos.animator,开发者可以轻松实现复杂的动画效果,提升应用的用户体验。本文将详细介绍如何使用@ohos.animator模块实现动画效果,并提供一些实际代码示例。一、动画模块的基本概念在鸿蒙Next中,动画可以分为以下几类:属性动
- 缓存:节省使用大模型的成本
雪碧没气阿
spring人工智能机器人自然语言处理AI大模型缓存
稍有经验的程序员对缓存都不陌生,在任何一个正式的工程项目上都少不了缓存的身影。硬件里面有缓存,软件里面也有缓存,缓存已经成了程序员的必修课。我们为什么要使用缓存呢?主要就是为了减少访问低速服务的次数,提高访问速度。大模型显然就是一个低速服务,甚至比普通的服务还要慢。为了改善大模型的使用体验,人们已经做出了一些努力,比如采用流式响应,提升第一个字出现在用户面前的速度。缓存,显然是另外一个可以解决大模
- 【大模型实战篇】使用GPTQ量化QwQ-32B微调后的推理模型
源泉的小广场
大模型大模型量化推理模型量化量化qwq32bgptq量化大模型推理性能调优
1.量化背景之所以做量化,就是希望在现有的硬件条件下,提升性能。量化能将模型权重从高精度(如FP32)转换为低精度(如INT8/FP16),内存占用可减少50%~75%。低精度运算(如INT8)在GPU等硬件上计算效率更高,推理速度可提升2~4倍。我们的任务是,将QwQ-32B微调后的推理模型,也就是bf16的精度,通过量化,压缩到int4。关于QwQ-32B微调,可以参考《利用ms-swift微
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的