数据结构基础之排序算法

在数据结构中,常见的排序算法有以下几种:

  1. 冒泡排序(Bubble Sort):通过比较相邻元素并交换它们的位置,每轮将最大(或最小)的元素冒泡到末尾,重复执行直到排序完成。
function bubbleSort(arr) {
  const n = arr.length;
  for (let i = 0; i < n - 1; i++) {
    for (let j = 0; j < n - i - 1; j++) {
      if (arr[j] > arr[j + 1]) {
        [arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];
      }
    }
  }
  return arr;
}

const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(bubbleSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:简单易懂,但对于大型数据集效率较低。
时间复杂度:
最优情况:O(n)(当数组已经排序好时)。
平均情况:O(n^2)。
最坏情况:O(n^2)。

  1. 插入排序(Insertion Sort):将数组分为已排序和未排序两部分,每次从未排序部分选择一个元素插入到已排序部分的正确位置,重复执行直到排序完成。
function insertionSort(arr) {
  const n = arr.length;
  for (let i = 1; i < n; i++) {
    let key = arr[i];
    let j = i - 1;
    while (j >= 0 && arr[j] > key) {
      arr[j + 1] = arr[j];
      j--;
    }
    arr[j + 1] = key;
  }
  return arr;
}

const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(insertionSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:适用于小型数据集和部分有序数组。
时间复杂度:
最优情况:O(n)(当数组已经排序好时)。
平均情况:O(n^2)。
最坏情况:O(n^2)。

  1. 选择排序(Selection Sort):每轮从未排序部分选择最小(或最大)的元素,将其与未排序部分的首元素交换,重复执行直到排序完成。
function selectionSort(arr) {
  const n = arr.length;
  for (let i = 0; i < n - 1; i++) {
    let minIdx = i;
    for (let j = i + 1; j < n; j++) {
      if (arr[j] < arr[minIdx]) {
        minIdx = j;
      }
    }
    [arr[i], arr[minIdx]] = [arr[minIdx], arr[i]];
  }
  return arr;
}

const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(selectionSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:简单易懂,但对于大型数据集效率较低。
时间复杂度:
最优情况:O(n^2)。
平均情况:O(n^2)。
最坏情况:O(n^2)。

  1. 快速排序(Quick Sort):通过选取一个基准元素,将数组分成比基准元素小和大的两部分,然后递归地对两部分进行排序。
function quickSort(arr) {
  if (arr.length <= 1) return arr;
  const pivot = arr[0];
  const left = [];
  const right = [];
  for (let i = 1; i < arr.length; i++) {
    if (arr[i] < pivot) {
      left.push(arr[i]);
    } else {
      right.push(arr[i]);
    }
  }
  return [...quickSort(left), pivot, ...quickSort(right)];
}

const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(quickSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:高效且被广泛使用的排序算法。
时间复杂度:
最优情况:O(n log n)。
平均情况:O(n log n)。
最坏情况:O(n^2)。

  1. 归并排序(Merge Sort):将数组不断分割成较小的子数组,然后再将子数组按顺序合并,重复执行直到排序完成。
function mergeSort(arr) {
  if (arr.length <= 1) return arr;
  const mid = Math.floor(arr.length / 2);
  const left = mergeSort(arr.slice(0, mid));
  const right = mergeSort(arr.slice(mid));
  return merge(left, right);
}

function merge(left, right) {
  const mergedArr = [];
  let leftIdx = 0;
  let rightIdx = 0;
  while (leftIdx < left.length && rightIdx < right.length) {
    if (left[leftIdx] < right[rightIdx]) {
      mergedArr.push(left[leftIdx]);
      leftIdx++;
    } else {
      mergedArr.push(right[rightIdx]);
      rightIdx++;
    }
  }
  return [...mergedArr, ...left.slice(leftIdx), ...right.slice(rightIdx)];
}

const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(mergeSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:稳定的排序算法,适用于大型数据集。
时间复杂度:
最优情况:O(n log n)。
平均情况:O(n log n)。
最坏情况:O(n log n)。

  1. 堆排序(Heap Sort):利用二叉堆(最大堆或最小堆)的特性进行排序,将堆顶元素与最后一个元素交换,然后重建堆,重复执行直到排序完成。
function heapSort(arr) {
  const n = arr.length;
  for (let i = Math.floor(n / 2) - 1; i >= 0; i--) {
    heapify(arr, n, i);
  }
  for (let i = n - 1; i >= 0; i--) {
    [arr[0], arr[i]] = [arr[i], arr[0]];
    heapify(arr, i, 0);
  }
  return arr;
}

function heapify(arr, n, i) {
  let largest = i;
  const left = 2 * i + 1;
  const right = 2 * i + 2;
  if (left < n && arr[left] > arr[largest]) {
    largest = left;
  }
  if (right < n && arr[right] > arr[largest]) {
    largest = right;
  }
  if (largest !== i) {
    [arr[i], arr[largest]] = [arr[largest], arr[i]];
    heapify(arr, n, largest);
  }
}

const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(heapSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:高效的原地排序算法。
时间复杂度:
最优情况:O(n log n)。
平均情况:O(n log n)。
最坏情况:O(n log n)。

  1. 希尔排序(Shell Sort):是插入排序的一种改进算法,通过分组进行插入排序,逐渐缩小分组间隔,直到分组间隔为1。
function shellSort(arr) {
  const n = arr.length;
  for (let gap = Math.floor(n / 2); gap > 0; gap = Math.floor(gap / 2)) {
    for (let i = gap; i < n; i++) {
      let temp = arr[i];
      let j;
      for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {
        arr[j] = arr[j - gap];
      }
      arr[j] = temp;
    }
  }
  return arr;
}

const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(shellSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:插入排序的改进版本,适用于中等大小的数据集。
时间复杂度:
最优情况:O(n log^2 n)(取决于步长序列)。
平均情况:取决于步长序列。
最坏情况:取决于步长序列。

  1. 计数排序(Counting Sort):适用于一定范围内的整数排序,通过统计每个元素出现的次数,然后计算每个元素的位置,重复执行直到排序完成。
function countingSort(arr) {
  const n = arr.length;
  let max = Math.max(...arr);
  let min = Math.min(...arr);
  const range = max - min + 1;
  const count = Array(range).fill(0);
  const output = Array(n);

  for (let i = 0; i < n; i++) {
    count[arr[i] - min]++;
  }

  for (let i = 1; i < range; i++) {
    count[i] += count[i - 1];
  }

  for (let i = n - 1; i >= 0; i--) {
    output[count[arr[i] - min] - 1] = arr[i];
    count[arr[i] - min]--;
  }

  for (let i = 0; i < n; i++) {
    arr[i] = output[i];
  }

  return arr;
}

const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(countingSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:适用于小范围整数排序。
时间复杂度:O(n + k),其中 n 是输入数组元素个数,k 是输入范围大小。

  1. 桶排序(Bucket Sort):将元素根据一定规则放入不同的桶中,每个桶内部进行排序,然后按顺序合并桶内的元素,重复执行直到排序完成。
function bucketSort(arr, bucketSize = 5) {
  if (arr.length === 0) return arr;

  const max = Math.max(...arr);
  const min = Math.min(...arr);
  const bucketCount = Math.floor((max - min) / bucketSize) + 1;
  const buckets = Array(bucketCount).fill().map(() => []);

  for (let i = 0; i < arr.length; i++) {
    const bucketIndex = Math.floor((arr[i] - min) / bucketSize);
    buckets[bucketIndex].push(arr[i]);
  }

  arr.length = 0;
  for (let i = 0; i < buckets.length; i++) {
    insertionSort(buckets[i]);
    arr.push(...buckets[i]);
  }

  return arr;
}

const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(bucketSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:适用于均匀分布的数据。
时间复杂度:O(n + k),其中 n 是输入数组元素个数,k 是桶的个数。

  1. 基数排序(Radix Sort):按照位数将元素分配到不同的桶中,然后按顺序合并桶内的元素,重复执行直到所有位数排序完成。
function radixSort(arr) {
  const max = Math.max(...arr);
  const maxLength = String(max).length;
  let bucket = Array.from({ length: 10 }, () => []);

  for (let i = 0; i < maxLength; i++) {
    for (let j = 0; j < arr.length; j++) {
      const digit = Math.floor(arr[j] / 10 ** i) % 10;
      bucket[digit].push(arr[j]);
    }
    arr.length = 0;
    for (let k = 0; k < bucket.length; k++) {
      arr.push(...bucket[k]);
      bucket[k].length = 0;
    }
  }

  return arr;
}

const arr = [64, 34, 25, 12, 22, 11, 90];
console.log(radixSort(arr)); // Output: [11, 12, 22, 25, 34, 64, 90]

特点:适用于数字位数相同的整数排序。
时间复杂度:O(d * (n + k)),其中 d 是最大数字的位数,n 是输入数组元素个数,k 是输入范围大小。

每种排序算法都有不同的时间复杂度和适用场景。在实际应用中,根据数据规模和性能要求选择合适的排序算法是很重要的。

你可能感兴趣的:(数据结构,数据结构,排序算法,算法)