强化学习实战:AI玩贪吃蛇(PyTorch)

文件

强化学习实战:AI玩贪吃蛇(PyTorch)_第1张图片

强化学习实战:AI玩贪吃蛇(PyTorch)_第2张图片

game.py

游戏用的是pygame库。

pygame中的坐标轴

强化学习实战:AI玩贪吃蛇(PyTorch)_第3张图片

init

我使用了collections中的namedtuple作为坐标。游戏中的蛇头蛇身食物都会用Point表示。

定义了方向的枚举类,用来表示方向。

Point = namedtuple('Point', 'x, y')
class Direction(Enum):
    LEFT = 1
    RIGHT = 2
    UP = 3
    DOWN = 4

强化学习实战:AI玩贪吃蛇(PyTorch)_第4张图片

    def __init__(self, w=640, h=480):
        self.W = w  # 窗口的宽
        self.H = h  # 窗口的高
        self.direction = Direction.RIGHT  # 一开始的方向为右
        self.display = pygame.display.set_mode((self.W, self.H))  # 设置游戏窗口大小
        self.clock = pygame.time.Clock()  # 帮助跟踪时间的对象
        pygame.display.set_caption('Snake')  # 设置窗口标题
        self.reset()  # 重置游戏参数

reset

    def reset(self):
        #   蛇一开始长这样:   --@
        self.head = Point(x=self.W / 2, y=self.H / 2)  # 初始化蛇头位置,位于正中央
        self.snake = [  # 蛇身,包括头部
            self.head,
            Point(x=self.head.x - BLOCK_SIZE, y=self.head.y),
            Point(x=2 * self.head.x - BLOCK_SIZE, y=self.head.y),
        ]
        self.food = None  # 食物
        self._place_food()  # 生成食物的坐标
        self.frame_iteration = 0  # 定义游戏的持续帧
        self.score = 0  # 游戏的分数,吃到苹果会加分

_place_food

 x = random.randint(0, (self.W - BLOCK_SIZE) // BLOCK_SIZE) * BLOCK_SIZE
 y = random.randint(0, (self.H - BLOCK_SIZE) // BLOCK_SIZE) * BLOCK_SIZE

强化学习实战:AI玩贪吃蛇(PyTorch)_第5张图片

def _place_food(self):
  	# BLOCK_SIZE 是每个单元格的大小;  
    # //是整除操作, 4//3 = 1, 4/3 = 1.3333333333333333
    x = random.randint(0, (self.W - BLOCK_SIZE) // BLOCK_SIZE) * BLOCK_SIZE  # 随机生成x坐标
    y = random.randint(0, (self.H - BLOCK_SIZE) // BLOCK_SIZE) * BLOCK_SIZE  # 随机生成y坐标
    self.food = Point(x, y)  # 设置食物的坐标
    if Point(x, y) in self.snake:  # 如果生成的坐标在蛇的身体里,就再重新生成一次
        self._place_food()

is_collision

    def is_collision(self, pt=None):  # pt是Point的缩写
        if pt is None: 
            pt = self.head
        if pt in self.snake[1:]:  #切片操作是因为snake[0]是头部,碰撞之一是指头部撞到身体 
            return True
        if pt.x < 0 or pt.x > self.W - BLOCK_SIZE or pt.y < 0 or pt.y > self.H - BLOCK_SIZE:  # 撞墙
            return True
        return False

_update_ui

def _update_ui(self):
    self.display.fill(BLACK)  # 将背景填充为黑色,其中BLACK = (0, 0, 0),就是一个RGB元组
    for pt in self.snake:
        # 画矩形,并填充颜色BLUE1,这里画的是蛇头和蛇身
        # 如果希望区分蛇头和蛇身的颜色:for pt in self.snake[1:],但要单独定义一个RGB元组来渲染蛇头
        pygame.draw.rect(self.display, BLUE1, pygame.Rect(pt.x, pt.y, BLOCK_SIZE, BLOCK_SIZE))  
        pygame.draw.rect(self.display, BLUE2, pygame.Rect(pt.x + 4, pt.y + 4, 12, 12))
    # 绘制食物
    pygame.draw.rect(self.display, RED, pygame.Rect(self.food.x, self.food.y, BLOCK_SIZE, BLOCK_SIZE))
    # pygame文本,其中FONT是FONT = pygame.font.Font('arial.ttf', 25)
    # arial.ttf是字体文件,25是字体大小
    text = FONT.render('Score:' + str(self.score), True, WHITE)
    self.display.blit(text, [0, 0])  # 将text放在窗口的(0,0)位置(左上角)
    pygame.display.flip()  # 更新整个待显示的Surface对象到屏幕上

_move

贪吃蛇游戏中,是不允许反向移动的(往左的时候不能立刻往右)。

解决办法有很多,我这里采用的方法是限制移动的方向为[straight:往前,right:往右,left:往左]

核心思想就是相对当前的方向,按照:

  • 当前方向的原方向就是straight
  • 当前方向的左边就是left
  • 当前方向的右边就是right

强化学习实战:AI玩贪吃蛇(PyTorch)_第6张图片

def _move(self, action):
    # action = [straight, right, left]
    clock_wise = [Direction.UP, Direction.RIGHT,
                  Direction.DOWN, Direction.LEFT]  # clock_wise:顺时针方向↑→↓←
    
    # 定位到当前方向在clock_wise中的索引
    idx = clock_wise.index(self.direction)  
    
    if np.array_equal(action, [1, 0, 0]):  # action是stright
        new_direction = clock_wise[idx]  # 当前方向是往前,操作也是往前,那么方向是不会变的。
        
    elif np.array_equal(action, [0, 1, 0]):  # action是right
        new_direction = clock_wise[(idx + 1) % 4]  # 当前的方向是往右,对于的"操作右"就是往下
        
    elif np.array_equal(action, [0, 0, 1]):  # action是left
        new_direction = clock_wise[(idx - 1) % 4]
        
    self.direction = new_direction
    x = self.head.x
    y = self.head.y
    
    # 根据方向更新坐标
    if self.direction == Direction.RIGHT:
        x += BLOCK_SIZE
    elif self.direction == Direction.LEFT:
        x -= BLOCK_SIZE
    elif self.direction == Direction.UP:
        y -= BLOCK_SIZE
    elif self.direction == Direction.DOWN:
        y += BLOCK_SIZE
    self.head = Point(x, y)

agent.py

init

    def __init__(self):
        self.model = Linear_QNet(11, 256, 3)
        self.gama = 0.9
        self.epsilon = 0
        self.n_games = 0  # 游戏的总局数
        self.memory = deque(maxlen=MEMORY_SIZE)  # 经验池的大小
        self.trainer = QTrainer(self.model, LR, self.gama)  # 训练过程封装在类中了

get_action

argmax:返回tensor中最大值的索引

>>> import torch
>>> x = torch.randn(5)  # 获取随机的5个值组成的tensor
>>> x
tensor([0.6875, 0.2979, 0.3359, 0.0452, 0.7232])
>>> max_idx = torch.argmax(x)
>>> max_idx
tensor(4)
>>> max_idx.item()  # 将tensor转为python的普通类型
4
>>> x[4]
tensor(0.7232)
    def get_action(self, state):
        self.epsilon = 80 - self.n_games
        final_move = [0, 0, 0]
        # epsilon会越来越小,那么采取随机动作的概率也会逐渐减小到0
        # move是一个1x3的列表,对于3种动作
        if random.randint(0, 200) < self.epsilon:  
            move = random.randint(0, 2)
            final_move[move] = 1
        else:
            state0 = torch.tensor(state, dtype=torch.float)
            prediction = self.model(state0)
            # 网络的输出是三种结果对于的价值期望,用argmax选出最高的那一个
            move = torch.argmax(prediction).item()
            final_move[move] = 1

        return final_move

get_state

这里我的状态是一个1x11的数组:

1.三个方向上是否有危险(如果按该方向走一步是否有危险)

2.当前的方向,如果是向上则是[1, 0, 0, 0],向下则是[0, 1, 0, 0];当然你定义的不一样也没有关系,反正只有一个方向是1。

3.食物的位置

    def get_state(self, game):
    	head = game.snake[0]

        pt_left = Point(head.x - BLOCK_SIZE, head.y)
        pt_right = Point(head.x + BLOCK_SIZE, head.y)
        pt_up = Point(head.x, head.y - BLOCK_SIZE)
        pt_down = Point(head.x, head.y + BLOCK_SIZE)

        dir_left = game.direction == Direction.LEFT
        dir_right = game.direction == Direction.RIGHT
        dir_up = game.direction == Direction.UP
        dir_down = game.direction == Direction.DOWN

        state = [
            # danger straight
            (dir_up and game.is_collision(pt_up)) or
            (dir_down and game.is_collision(pt_down)) or
            (dir_left and game.is_collision(pt_left)) or
            (dir_right and game.is_collision(pt_right)),

            # danger left
            (dir_up and game.is_collision(pt_left)) or
            (dir_down and game.is_collision(pt_right)) or
            (dir_left and game.is_collision(pt_down)) or
            (dir_right and game.is_collision(pt_up)),

            # danger right
            (dir_up and game.is_collision(pt_right)) or
            (dir_down and game.is_collision(pt_left)) or
            (dir_left and game.is_collision(pt_up)) or
            (dir_right and game.is_collision(pt_down)),

            # move direction
            dir_up,
            dir_down,
            dir_left,
            dir_right,

            # food location
            game.food.x < head.x,  # food in left
            game.food.x > head.x,  # food in right
            game.food.y < head.y,  # food in up
            game.food.y > head.y,  # food in down

        ]
        return np.array(state, dtype=int)

remember

保存记录

def remember(self, state, action, reward, next_state, is_done):
    self.memory.append((state, action, reward, next_state, is_done))

train_short_memory

拿一组训练数据训练。

def train_short_memory(self, state, action, reward, next_state, is_done):
    self.trainer.train_step(state, action, reward, next_state, is_done)

train_long_memory

zip

>>>x = [[1,2,3], [4,5,6]]
>>>x1 = zip(*x)
>>>x1
<zip at 0x255cebb5b40>
>>>for i in x1:
    print(i)    
(1, 4)
(2, 5)
(3, 6)
    def train_long_memory(self):
        if len(self.memory) > BATCH_SIZE:  # 如果当前经验池中的数据够,就随机采用
            mini_sample = random.sample(self.memory, BATCH_SIZE)
        else:
            mini_sample = self.memory  # 数据量不够,直接全部拿过来
        states, actions, rewards, next_states, is_dones = zip(*mini_sample)
        self.trainer.train_step(states, actions, rewards, next_states, is_dones)

model.py

Linear_QNet

模型用的是很普通的线性层。

init

    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(input_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, output_size)
        )

forward

def forward(self, x):
    return self.net(x)

save_model

    def save_model(self, file_name='model.pth'):
        model_folder_path = './model'
        if not os.path.exists(model_folder_path):
            os.mkdir(model_folder_path)
        file_name = os.path.join(model_folder_path, file_name)
        torch.save(self.state_dict(), file_name)

QTrainer

init

    def __init__(self, model, lr, gama):
        self.model = model
        self.lr = lr
        self.gama = gama
        self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
        self.creterion = nn.MSELoss()

train_step

    def train_step(self, state, action, reward, next_state, is_done):
        # 参数都是np.array,转换成tensor
        state = torch.tensor(state, dtype=torch.float)
        action = torch.tensor(action, dtype=torch.float)
        reward = torch.tensor(reward, dtype=torch.long)
        next_state = torch.tensor(next_state, dtype=torch.float)

        # 如果是训练一组数据,shape是n,则要将tensor的shape增加一个维度
        # 多组数据不需要,因为shape是 1xn的
        if len(state.shape) == 1:
            is_done = (is_done,)
            state = torch.unsqueeze(state, 0)
            action = torch.unsqueeze(action, 0)
            reward = torch.unsqueeze(reward, 0)
            next_state = torch.unsqueeze(next_state, 0)

        pred = self.model(state)
        target = pred.clone()
        for idx in range(len(is_done)):
            Q_new = reward[idx]
            if not is_done:
                # gama:模型对未来的奖励的重视程度,一般gama=0.9
                Q_new = Q_new + self.gama * torch.max(self.model(next_state[idx]))
            # torch.argmax(action).item() 更新价值期望
            target[idx][torch.argmax(action).item()] = Q_new
        self.optimizer.zero_grad()
        loss = self.creterion(target, pred)
        loss.backward()
        self.optimizer.step()

train()

这个函数可以单独放在一个文件中,不过我为了方便,放在了agent.py

def train():
    # 用来记录score,平均score,用于画图
    plot_scores = []
    plot_mean_scores = []
    total_score = 0
    
    record = 0  # 最好的记录
    agent = Agent()
    game = SnakeGameAI()
    while True:
        state_old = agent.get_state(game)
        final_move = agent.get_action(state_old)
        reward, is_done, score = game.play_step(final_move)
        state_next = agent.get_state(game)

        agent.train_short_memory(state_old, final_move, reward, state_next, is_done)
        agent.remember(state_old, final_move, reward, state_next, is_done)

        if is_done:
            agent.n_games += 1
            game.reset()
            agent.train_long_memory()
            # 如果分数比最好的记录还要好,那就保存一下模型
            if score > record:
                record = score
                agent.model.save_model()
            print('Game', agent.n_games, 'Score', score, 'Record:', record)
            total_score += score
            mean_scores = total_score / agent.n_games
            plot_mean_scores.append(mean_scores)


if __name__ == '__main__':
    train()

代码

agent.py

from game import BLOCK_SIZE, Direction, Point, SnakeGameAI
import torch
import numpy as np
from model import Linear_QNet, QTrainer
from collections import deque
import random

LR = 0.001
MEMORY_SIZE = 100_1000
BATCH_SIZE = 100


class Agent:
    def __init__(self):
        self.model = Linear_QNet(11, 256, 3)
        self.gama = 0.9
        self.epsilon = 0
        self.n_games = 0
        self.memory = deque(maxlen=MEMORY_SIZE)
        self.trainer = QTrainer(self.model, LR, self.gama)

    def get_action(self, state):
        self.epsilon = 80 - self.n_games
        final_move = [0, 0, 0]
        if random.randint(0, 200) < self.epsilon:
            move = random.randint(0, 2)
            final_move[move] = 1
        else:
            state0 = torch.tensor(state, dtype=torch.float)
            prediction = self.model(state0)
            move = torch.argmax(prediction).item()
            final_move[move] = 1

        return final_move

    def get_state(self, game):
        head = game.snake[0]

        pt_left = Point(head.x - BLOCK_SIZE, head.y)
        pt_right = Point(head.x + BLOCK_SIZE, head.y)
        pt_up = Point(head.x, head.y - BLOCK_SIZE)
        pt_down = Point(head.x, head.y + BLOCK_SIZE)

        dir_left = game.direction == Direction.LEFT
        dir_right = game.direction == Direction.RIGHT
        dir_up = game.direction == Direction.UP
        dir_down = game.direction == Direction.DOWN

        state = [
            # danger straight
            (dir_up and game.is_collision(pt_up)) or
            (dir_down and game.is_collision(pt_down)) or
            (dir_left and game.is_collision(pt_left)) or
            (dir_right and game.is_collision(pt_right)),

            # danger left
            (dir_up and game.is_collision(pt_left)) or
            (dir_down and game.is_collision(pt_right)) or
            (dir_left and game.is_collision(pt_down)) or
            (dir_right and game.is_collision(pt_up)),

            # danger right
            (dir_up and game.is_collision(pt_right)) or
            (dir_down and game.is_collision(pt_left)) or
            (dir_left and game.is_collision(pt_up)) or
            (dir_right and game.is_collision(pt_down)),

            # move direction
            dir_up,
            dir_down,
            dir_left,
            dir_right,

            # food location
            game.food.x < head.x,  # food in left
            game.food.x > head.x,  # food in right
            game.food.y < head.y,  # food in up
            game.food.y > head.y,  # food in down

        ]
        return np.array(state, dtype=int)

    def remember(self, state, action, reward, next_state, is_done):
        self.memory.append((state, action, reward, next_state, is_done))

    def train_short_memory(self, state, action, reward, next_state, is_done):
        self.trainer.train_step(state, action, reward, next_state, is_done)

    def train_long_memory(self):
        if len(self.memory) > BATCH_SIZE:
            mini_sample = random.sample(self.memory, BATCH_SIZE)
        else:
            mini_sample = self.memory
        states, actions, rewards, next_states, is_dones = zip(*mini_sample)
        self.trainer.train_step(states, actions, rewards, next_states, is_dones)


def train():
    plot_scores = []
    plot_mean_scores = []
    total_score = 0
    record = 0
    agent = Agent()
    game = SnakeGameAI()
    while True:
        state_old = agent.get_state(game)
        final_move = agent.get_action(state_old)
        reward, is_done, score = game.play_step(final_move)
        state_next = agent.get_state(game)

        agent.train_short_memory(state_old, final_move, reward, state_next, is_done)
        agent.remember(state_old, final_move, reward, state_next, is_done)

        if is_done:
            agent.n_games += 1
            game.reset()
            agent.train_long_memory()
            if score > record:
                record = score
                agent.model.save_model()
            print('Game', agent.n_games, 'Score', score, 'Record:', record)
            total_score += score
            mean_scores = total_score / agent.n_games
            plot_mean_scores.append(mean_scores)


if __name__ == '__main__':
    train()

game.py

from re import S
from matplotlib import collections
import pygame
from enum import Enum
import random
from collections import namedtuple, deque
import numpy as np

pygame.init()
BLOCK_SIZE = 20
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
RED = (200, 0, 0)
BLUE1 = (0, 0, 255)
BLUE2 = (0, 100, 255)
SPEED = 20
FONT = pygame.font.Font('arial.ttf', 25)
Point = namedtuple('Point', 'x, y')


class Direction(Enum):
    LEFT = 1
    RIGHT = 2
    UP = 3
    DOWN = 4


class SnakeGameAI:
    def __init__(self, w=640, h=480):
        self.W = w
        self.H = h
        self.direction = Direction.RIGHT
        self.display = pygame.display.set_mode((self.W, self.H))
        self.clock = pygame.time.Clock()
        pygame.display.set_caption('Snake')
        self.reset()

    def reset(self):
        #   --@
        self.head = Point(x=self.W / 2, y=self.H / 2)
        self.snake = [
            self.head,
            Point(x=self.head.x - BLOCK_SIZE, y=self.head.y),
            Point(x=2 * self.head.x - BLOCK_SIZE, y=self.head.y),
        ]
        self.food = None
        self._place_food()
        self.frame_iteration = 0
        self.score = 0

    def _place_food(self):
        x = random.randint(0, (self.W - BLOCK_SIZE) // BLOCK_SIZE) * BLOCK_SIZE
        y = random.randint(0, (self.H - BLOCK_SIZE) // BLOCK_SIZE) * BLOCK_SIZE
        self.food = Point(x, y)
        if Point(x, y) in self.snake:
            self._place_food()

    def play_step(self, action):
        # return -> reward, is_done, score
        self.frame_iteration += 1
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                pygame.quit()
                quit()
        # 1. move
        self._move(action)
        self.snake.insert(0, self.head)

        # 2.check game is over
        is_done = False
        reward = 0
        if self.is_collision() or self.frame_iteration > 100 * len(self.snake):
            is_done = True
            reward -= 10
            return reward, is_done, self.score

        # 3. food is eaten
        if self.head == self.food:
            self._place_food()
            self.score += 1
            reward = 10
        else:
            self.snake.pop()

        # 4. update ui
        self._update_ui()
        self.clock.tick(SPEED)

        # 5. return info
        return reward, is_done, self.score

    def is_collision(self, pt=None):
        if pt is None:
            pt = self.head
        if pt in self.snake[1:]:
            return True
        if pt.x < 0 or pt.x > self.W - BLOCK_SIZE or pt.y < 0 or pt.y > self.H - BLOCK_SIZE:
            return True
        return False

    def _update_ui(self):
        self.display.fill(BLACK)
        for pt in self.snake:
            pygame.draw.rect(self.display, BLUE1, pygame.Rect(pt.x, pt.y, BLOCK_SIZE, BLOCK_SIZE))
            pygame.draw.rect(self.display, BLUE2, pygame.Rect(pt.x + 4, pt.y + 4, 12, 12))
        pygame.draw.rect(self.display, RED, pygame.Rect(self.food.x, self.food.y, BLOCK_SIZE, BLOCK_SIZE))
        text = FONT.render('Score:' + str(self.score), True, WHITE)
        self.display.blit(text, [0, 0])
        pygame.display.flip()  # 更新整个待显示的Surface对象到屏幕上

    def _move(self, action):
        # action = [straight, right, left]
        clock_wise = [Direction.UP, Direction.RIGHT,
                      Direction.DOWN, Direction.LEFT]
        idx = clock_wise.index(self.direction)
        if np.array_equal(action, [1, 0, 0]):
            new_direction = clock_wise[idx]
        if np.array_equal(action, [0, 1, 0]):
            new_direction = clock_wise[(idx + 1) % 4]
        if np.array_equal(action, [0, 0, 1]):
            new_direction = clock_wise[(idx - 1) % 4]
        self.direction = new_direction
        x = self.head.x
        y = self.head.y
        if self.direction == Direction.RIGHT:
            x += BLOCK_SIZE
        elif self.direction == Direction.LEFT:
            x -= BLOCK_SIZE
        elif self.direction == Direction.UP:
            y -= BLOCK_SIZE
        elif self.direction == Direction.DOWN:
            y += BLOCK_SIZE
        self.head = Point(x, y)

model.py

import torch
import torch.optim as optim
import torch.nn as nn
import os


class Linear_QNet(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(input_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, output_size)
        )

    def forward(self, x):
        return self.net(x)

    def save_model(self, file_name='model.pth'):
        model_folder_path = './model'
        if not os.path.exists(model_folder_path):
            os.mkdir(model_folder_path)
        file_name = os.path.join(model_folder_path, file_name)
        torch.save(self.state_dict(), file_name)


class QTrainer:
    def __init__(self, model, lr, gama):
        self.model = model
        self.lr = lr
        self.gama = gama
        self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
        self.creterion = nn.MSELoss()

    def train_step(self, state, action, reward, next_state, is_done):
        state = torch.tensor(state, dtype=torch.float)
        action = torch.tensor(action, dtype=torch.float)
        reward = torch.tensor(reward, dtype=torch.long)
        next_state = torch.tensor(next_state, dtype=torch.float)

        if len(state.shape) == 1:
            is_done = (is_done,)
            state = torch.unsqueeze(state, 0)
            action = torch.unsqueeze(action, 0)
            reward = torch.unsqueeze(reward, 0)
            next_state = torch.unsqueeze(next_state, 0)

        pred = self.model(state)
        target = pred.clone()
        for idx in range(len(is_done)):
            Q_new = reward[idx]
            if not is_done:
                Q_new = Q_new + self.gama * torch.max(self.model(next_state[idx]))
            target[idx][torch.argmax(action).item()] = Q_new
        self.optimizer.zero_grad()
        loss = self.creterion(target, pred)
        loss.backward()
        self.optimizer.step()

字体文件

阿里云盘

https://www.aliyundrive.com/s/J8jPL6ibosg

百度云盘

链接:https://pan.baidu.com/s/18t5V8dsh_0fF5FZFtwRrBw
提取码:0i40

你可能感兴趣的:(强化学习,人工智能,pytorch,pygame)