COCO数据集梳理

COCO数据集简介

coco数据集下载需要

COCO - Common Objects in Context

关键索引

以instances_val2017.json为例,有的博客说还有一个关键索引type,但是我没找到

info/licenses

这俩货没啥可说的,数据信息和版权吧,个人用不着

images

images里是一个列表,单独拿出来一个如下

{"license": 4,"file_name": "000000397133.jpg","coco_url": "http://images.cocodataset.org/val2017/000000397133.jpg","height": 427,"width": 640,"date_captured": "2013-11-14 17:02:52","flickr_url": "http://farm7.staticflickr.com/6116/6255196340_da26cf2c9e_z.jpg","id": 397133}

其中需要关注的信息是

图像名:"file_name": "000000397133.jpg"

图像在网络中的位置:"coco_url": "http://images.cocodataset.org/val2017/000000397133.jpg"

图像高度:"height": 427

图像宽度:"width": 640

图像ID:"id": 397133

annotations

annotations里也是一个列表,单独拿出来一个如下

{"segmentation": [[510.66,423.01,511.72,420.03,510.45......]],"area": 702.1057499999998,"iscrowd": 0,"image_id": 289343,"bbox": [473.07,395.93,38.65,28.67],"category_id": 18,"id": 1768}

语义分割:"segmentation": [[510.66,423.01,511.72,420.03,510.45......] 这个是围绕目标一圈的点

区域面积:"area": 702.1057499999998 ??这个位置需要确认一下,应该是目标的面积

是否是人群:"iscrowd": 0 

图像ID:"image_id": 289343 这个对应images里的id

检测框:"bbox":[473.07,395.93,38.65,28.67] 左上点xy+wh

类别ID:"category_id": 18 在数据集中的第几个类别,默认0类别是background

标签ID:"id": 1768 就是第几个标签,这个id不是对应在第几张图中的id,而是在整个数据集中标签第几个id

categories

也是个列表,这个有些没啥说的

{"supercategory": "animal","id": 18,"name": "dog"}

类别父类:"supercategory": "animal" 这个没怎么用到过,但是还挺好的,比如说我想分动物和人、车,就可以用这个父类

类别id: "id": 18 dog这个类别在类别列表中的id,对应上面的"category_id"

类别名:"name": "dog"

class_name = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane','bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
self._valid_ids = [
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]

原始数据集ID就是不连续的,不知道因为啥

数据介绍

Dataset之COCO数据集:COCO数据集的简介、下载、使用方法之详细攻略_一个处女座的程序猿的博客-CSDN博客_coco数据集

COCO类别

index:0   id:1   name:person         supercategory:person         
index:1   id:2   name:bicycle        supercategory:vehicle        
index:2   id:3   name:car            supercategory:vehicle        
index:3   id:4   name:motorcycle     supercategory:vehicle        
index:4   id:5   name:airplane       supercategory:vehicle        
index:5   id:6   name:bus            supercategory:vehicle        
index:6   id:7   name:train          supercategory:vehicle        
index:7   id:8   name:truck          supercategory:vehicle        
index:8   id:9   name:boat           supercategory:vehicle        
index:9   id:10  name:traffic light  supercategory:outdoor        
index:10  id:11  name:fire hydrant   supercategory:outdoor        
index:11  id:13  name:stop sign      supercategory:outdoor        
index:12  id:14  name:parking meter  supercategory:outdoor        
index:13  id:15  name:bench          supercategory:outdoor        
index:14  id:16  name:bird           supercategory:animal         
index:15  id:17  name:cat            supercategory:animal         
index:16  id:18  name:dog            supercategory:animal         
index:17  id:19  name:horse          supercategory:animal         
index:18  id:20  name:sheep          supercategory:animal         
index:19  id:21  name:cow            supercategory:animal         
index:20  id:22  name:elephant       supercategory:animal         
index:21  id:23  name:bear           supercategory:animal         
index:22  id:24  name:zebra          supercategory:animal         
index:23  id:25  name:giraffe        supercategory:animal         
index:24  id:27  name:backpack       supercategory:accessory      
index:25  id:28  name:umbrella       supercategory:accessory      
index:26  id:31  name:handbag        supercategory:accessory      
index:27  id:32  name:tie            supercategory:accessory      
index:28  id:33  name:suitcase       supercategory:accessory      
index:29  id:34  name:frisbee        supercategory:sports         
index:30  id:35  name:skis           supercategory:sports         
index:31  id:36  name:snowboard      supercategory:sports         
index:32  id:37  name:sports ball    supercategory:sports         
index:33  id:38  name:kite           supercategory:sports         
index:34  id:39  name:baseball bat   supercategory:sports         
index:35  id:40  name:baseball glove supercategory:sports         
index:36  id:41  name:skateboard     supercategory:sports         
index:37  id:42  name:surfboard      supercategory:sports         
index:38  id:43  name:tennis racket  supercategory:sports         
index:39  id:44  name:bottle         supercategory:kitchen        
index:40  id:46  name:wine glass     supercategory:kitchen        
index:41  id:47  name:cup            supercategory:kitchen        
index:42  id:48  name:fork           supercategory:kitchen        
index:43  id:49  name:knife          supercategory:kitchen        
index:44  id:50  name:spoon          supercategory:kitchen        
index:45  id:51  name:bowl           supercategory:kitchen        
index:46  id:52  name:banana         supercategory:food           
index:47  id:53  name:apple          supercategory:food           
index:48  id:54  name:sandwich       supercategory:food           
index:49  id:55  name:orange         supercategory:food           
index:50  id:56  name:broccoli       supercategory:food           
index:51  id:57  name:carrot         supercategory:food           
index:52  id:58  name:hot dog        supercategory:food           
index:53  id:59  name:pizza          supercategory:food           
index:54  id:60  name:donut          supercategory:food           
index:55  id:61  name:cake           supercategory:food           
index:56  id:62  name:chair          supercategory:furniture      
index:57  id:63  name:couch          supercategory:furniture      
index:58  id:64  name:potted plant   supercategory:furniture      
index:59  id:65  name:bed            supercategory:furniture      
index:60  id:67  name:dining table   supercategory:furniture      
index:61  id:70  name:toilet         supercategory:furniture      
index:62  id:72  name:tv             supercategory:electronic     
index:63  id:73  name:laptop         supercategory:electronic     
index:64  id:74  name:mouse          supercategory:electronic     
index:65  id:75  name:remote         supercategory:electronic     
index:66  id:76  name:keyboard       supercategory:electronic     
index:67  id:77  name:cell phone     supercategory:electronic     
index:68  id:78  name:microwave      supercategory:appliance      
index:69  id:79  name:oven           supercategory:appliance      
index:70  id:80  name:toaster        supercategory:appliance      
index:71  id:81  name:sink           supercategory:appliance      
index:72  id:82  name:refrigerator   supercategory:appliance      
index:73  id:84  name:book           supercategory:indoor         
index:74  id:85  name:clock          supercategory:indoor         
index:75  id:86  name:vase           supercategory:indoor         
index:76  id:87  name:scissors       supercategory:indoor         
index:77  id:88  name:teddy bear     supercategory:indoor         
index:78  id:89  name:hair drier     supercategory:indoor         
index:79  id:90  name:toothbrush     supercategory:indoor         

你可能感兴趣的:(深度学习,笔记,工作经验,目标检测,深度学习,人工智能)