MySQL初探

Background

通过阅读小林coding,大致了解了mysql数据库的种种特点,与之前学的数据库实现大体思路相同,感觉学习不能停留在理论层面,要调研生产级别的中间件实现。

一条代码运行在mysql上的流程

MySQL初探_第1张图片

1. 连接的过程需要先经过 TCP 三次握手,完成 TCP 连接的建立后,连接器就要开始验证你的用户名和密码

2.MySQL 8.0 版本直接将查询缓存删掉了,也就是说 MySQL 8.0 开始,执行一条 SQL 查询语句,不会再走到查询缓存这个阶段了。

3 第一件事情,词法分析 第二件事情,语法分析 然后构建语法树,方便后续模块读取表名、字段、语句类型;

经过解析器后,接着就要进入执行 SQL 查询语句的流程了,每条SELECT 查询语句流程主要可以分为下面这三个阶段:

  • prepare 阶段,也就是预处理阶段;
  • optimize 阶段,也就是优化阶段;
  • execute 阶段,也就是执行阶段;

mysql一行数据是怎么存储的 

元数据存在何处

MySQL初探_第2张图片

  • db.opt,用来存储当前数据库的默认字符集和字符校验规则。
  • t_order.frm ,t_order 的表结构会保存在这个文件。在 MySQL 中建立一张表都会生成一个.frm 文件,该文件是用来保存每个表的元数据信息的,主要包含表结构定义。
  • t_order.ibd,t_order 的表数据会保存在这个文件。表数据既可以存在共享表空间文件(文件名:ibdata1)里,也可以存放在独占表空间文件(文件名:表名字.ibd)。这个行为是由参数 innodb_file_per_table 控制的,若设置了参数 innodb_file_per_table 为 1,则会将存储的数据、索引等信息单独存储在一个独占表空间,从 MySQL 5.6.6 版本开始,它的默认值就是 1 了,因此从这个版本之后, MySQL 中每一张表的数据都存放在一个独立的 .ibd 文件

一个table的大体存储如下图

MySQL初探_第3张图片

区是用来做逻辑页的连续性用的。

InnoDB 的数据是按「页」为单位来读写的,也就是说,当需要读一条记录的时候,并不是将这个行记录从磁盘读出来,而是以页为单位,将其整体读入内存。

默认每个页的大小为 16KB,也就是最多能保证 16KB 的连续存储空间

接下来我们来看看

MySQL初探_第4张图片

MySQL初探_第5张图片

 当数据表的字段都定义成 NOT NULL 的时候,这时候表里的行格式就不会有 NULL 值列表了

「NULL 值列表」的空间不是固定 1 字节的。

当一条记录有 9 个字段值都是 NULL,那么就会创建 2 字节空间的「NULL 值列表」,以此类推

  • row_id

如果我们建表的时候指定了主键或者唯一约束列,那么就没有 row_id 隐藏字段了。如果既没有指定主键,又没有唯一约束,那么 InnoDB 就会为记录添加 row_id 隐藏字段。row_id不是必需的,占用 6 个字节。

  • trx_id

事务id,表示这个数据是由哪个事务生成的。 trx_id是必需的,占用 6 个字节。

  • roll_pointer

这条记录上一个版本的指针。roll_pointer 是必需的,占用 7 个字节。

如果你熟悉 MVCC 机制,你应该就清楚 trx_id 和 roll_pointer 的作用了,如果你还不知道 MVCC 机制,可以看完这篇文章 (opens new window),一定要掌握,面试也很经常问 MVCC 是怎么实现的。

一行记录最大能存储 65535 字节的数据,但是这个是包含「变长字段字节数列表所占用的字节数」和「NULL值列表所占用的字节数」。所以, 我们在算 varchar(n) 中 n 最大值时,需要减去这两个列表所占用的字节数。 65535 - 2 - 1 = 65532

mysql的索引

B+Tree 存储千万级的数据只需要 3-4 层高度就可以满足,这意味着从千万级的表查询目标数据最多需要 3-4 次磁盘 I/O,所以B+Tree 相比于 B 树和二叉树来说,最大的优势在于查询效率很高,因为即使在数据量很大的情况,查询一个数据的磁盘 I/O 依然维持在 3-4次。

B+Tree vs B Tree

B+Tree 只在叶子节点存储数据,而 B 树 的非叶子节点也要存储数据,所以 B+Tree 的单个节点的数据量更小,在相同的磁盘 I/O 次数下,就能查询更多的节点。

另外,B+Tree 叶子节点采用的是双链表连接,适合 MySQL 中常见的基于范围的顺序查找,而 B 树无法做到这一点。

二级索引

也叫非聚簇索引,也就是说只是存了这个索引字段和主键字段,还要取主索引回一次表拿到所有字段,如果要的数据不是主键的话。

MySQL初探_第6张图片

 联合索引

MySQL初探_第7张图片

使用联合索引时,存在最左匹配原则,也就是按照最左优先的方式进行索引的匹配。在使用联合索引进行查询的时候,如果不遵循「最左匹配原则」,联合索引会失效,这样就无法利用到索引快速查询的特性了。

Q1: select * from t_table where a > 1 and b = 2,联合索引(a, b)哪一个字段用到了联合索引的 B+Tree?

1.联合索引的最左匹配原则在遇到 a 字段的范围查询( >)后就停止匹配了,因此 b 字段并没有使用到联合索引。 

Q2: select * from t_table where a >= 1 and b = 2,联合索引(a, b)哪一个字段用到了联合索引的 B+Tree?

没有在遇到 a 字段的范围查询( >=)后就停止匹配了,b 字段还是可以用到了联合索引的。

Q3  SELECT * FROM t_table WHERE a BETWEEN 2 AND 8 AND b = 2,联合索引(a, b)哪一个字段用到了联合索引的 B+Tree?

 Q3 这条查询语句 a 和 b 字段都用到了联合索引进行索引查询

select * from table where a > 1 and b = 2

索引下推优化(index condition pushdown), 可以在联合索引遍历过程中,对联合索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数mysql引入索引下推后,查询列若包含在联合索引列中,那么查询条件可以不遵循最左原则

建立联合索引时,要把区分度大的字段排在前面,这样区分度大的字段越有可能被更多的 SQL 使用到

MySQL初探_第8张图片

这里说一下几种常见优化索引的方法:

  • 前缀索引优化;
  • 覆盖索引优化;
  • 主键索引最好是自增的;
  • 防止索引失效;

前缀索引优化

前缀索引顾名思义就是使用某个字段中字符串的前几个字符建立索引,那我们为什么需要使用前缀来建立索引呢?

使用前缀索引是为了减小索引字段大小,可以增加一个索引页中存储的索引值,有效提高索引的查询速度。在一些大字符串的字段作为索引时,使用前缀索引可以帮助我们减小索引项的大小。

不过,前缀索引有一定的局限性,例如:

  • order by 就无法使用前缀索引;
  • 无法把前缀索引用作覆盖索引;

覆盖索引优化

覆盖索引是指 SQL 中 query 的所有字段,在索引 B+Tree 的叶子节点上都能找得到的那些索引,从二级索引中查询得到记录,而不需要通过聚簇索引查询获得,可以避免回表的操作。

假设我们只需要查询商品的名称、价格,有什么方式可以避免回表呢?

我们可以建立一个联合索引,即「商品ID、名称、价格」作为一个联合索引。如果索引中存在这些数据,查询将不会再次检索主键索引,从而避免回表。

所以,使用覆盖索引的好处就是,不需要查询出包含整行记录的所有信息,也就减少了大量的 I/O 操作。

主键索引最好是自增的

我们在建表的时候,都会默认将主键索引设置为自增的,具体为什么要这样做呢?又什么好处?

InnoDB 创建主键索引默认为聚簇索引,数据被存放在了 B+Tree 的叶子节点上。也就是说,同一个叶子节点内的各个数据是按主键顺序存放的,因此,每当有一条新的数据插入时,数据库会根据主键将其插入到对应的叶子节点中。

如果我们使用自增主键,那么每次插入的新数据就会按顺序添加到当前索引节点的位置,不需要移动已有的数据,当页面写满,就会自动开辟一个新页面。因为每次插入一条新记录,都是追加操作,不需要重新移动数据,因此这种插入数据的方法效率非常高。

如果我们使用非自增主键,由于每次插入主键的索引值都是随机的,因此每次插入新的数据时,就可能会插入到现有数据页中间的某个位置,这将不得不移动其它数据来满足新数据的插入,甚至需要从一个页面复制数据到另外一个页面,我们通常将这种情况称为页分裂页分裂还有可能会造成大量的内存碎片,导致索引结构不紧凑,从而影响查询效率。(B+树)

自增id做主键的好处_主键自增的好处_七天晒网的博客-CSDN博客

Mysql为何建议使用自增id作主键,有什么优点-阿里云开发者社区

innodb存储引擎

InnoDB 的数据是按「数据页」为单位来读写的,也就是说,当需要读一条记录的时候,并不是将这个记录本身从磁盘读出来,而是以页为单位,将其整体读入内存。

数据库的 I/O 操作的最小单位是页,InnoDB 数据页的默认大小是 16KB,意味着数据库每次读写都是以 16KB 为单位的,一次最少从磁盘中读取 16K 的内容到内存中,一次最少把内存中的 16K 内容刷新到磁盘中。

MySQL初探_第9张图片

 

页目录就是起到一个快速定位行记录的作用,像leveldb一样是稀疏索引 

MySQL初探_第10张图片

  • 聚簇索引的叶子节点存放的是实际数据,所有完整的用户记录都存放在聚簇索引的叶子节点;
  • 二级索引的叶子节点存放的是主键值,而不是实际数据。
  • InnoDB 在创建聚簇索引时,会根据不同的场景选择不同的列作为索引:
  • 如果有主键,默认会使用主键作为聚簇索引的索引键;
  • 如果没有主键,就选择第一个不包含 NULL 值的唯一列作为聚簇索引的索引键;
  • 在上面两个都没有的情况下,InnoDB 将自动生成一个隐式自增 id 列作为聚簇索引的索引键;

 事务实现之Read View

MySQL初探_第11张图片

MySQL初探_第12张图片 

所以可重复读是怎么实现的

读已提交 读提交隔离级别是在每次读取数据时,都会生成一个新的 Read View

MySQL初探_第13张图片 

可重复读隔离级是由 MVCC(多版本并发控制)实现的,实现的方式是开始事务后(执行 begin 语句后),在执行第一个查询语句后,会创建一个 Read View,后续的查询语句利用这个 Read View,通过这个 Read View 就可以在 undo log 版本链找到事务开始时的数据,所以事务过程中每次查询的数据都是一样的,即使中途有其他事务插入了新纪录,是查询不出来这条数据的,所以就很好了避免幻读问题 

Innodb 引擎为了解决「可重复读」隔离级别使用「当前读」而造成的幻读问题,就引出了间隙锁。因为这种特殊现象的存在,所以我们认为 MySQL Innodb 中的 MVCC 并不能完全避免幻读现象

MySQL InnoDB 引擎的可重复读隔离级别(默认隔离级),根据不同的查询方式,分别提出了避免幻读的方案:

  • 针对快照读(普通 select 语句),是通过 MVCC 方式解决了幻读。
  • 针对当前读(select ... for update 等语句),是通过 next-key lock(记录锁+间隙锁)方式解决了幻读。

第一个例子:对于快照读, MVCC 并不能完全避免幻读现象。因为当事务 A 更新了一条事务 B 插入的记录,那么事务 A 前后两次查询的记录条目就不一样了,所以就发生幻读。

第二个例子:对于当前读,如果事务开启后,并没有执行当前读,而是先快照读,然后这期间如果其他事务插入了一条记录,那么事务后续使用当前读进行查询的时候,就会发现两次查询的记录条目就不一样了,所以就发生幻读。

所以,MySQL 可重复读隔离级别并没有彻底解决幻读,只是很大程度上避免了幻读现象的发生。

MySQL中的BufferPool

MySQL初探_第14张图片 

Buffer Pool 是在 MySQL 启动的时候,向操作系统申请的一片连续的内存空间,默认配置下 Buffer Pool 只有 128MB 。

可以通过调整 innodb_buffer_pool_size 参数来设置 Buffer Pool 的大小,一般建议设置成可用物理内存的 60%~80%。

InnoDB 会为 Buffer Pool 申请一片连续的内存空间,然后按照默认的16KB的大小划分出一个个的页, Buffer Pool 中的页就叫做缓存页

 MySQL初探_第15张图片

如何管理缓存页

MySQL初探_第16张图片MySQL初探_第17张图片 

简单的 LRU 算法并没有被 MySQL 使用,因为简单的 LRU 算法无法避免下面这两个问题:

  • 预读失效;是可能这些被提前加载进来的数据页,并没有被访问,相当于这个预读是白做了,这个就是预读失效

    如果使用简单的 LRU 算法,就会把预读页放到 LRU 链表头部,而当 Buffer Pool空间不够的时候,还需要把末尾的页淘汰掉。

    如果这些预读页如果一直不会被访问到,就会出现一个很奇怪的问题,不会被访问的预读页却占用了 LRU 链表前排的位置,而末尾淘汰的页,可能是频繁访问的页,这样就大大降低了缓存命中率。

MySQL初探_第18张图片

 

  • Buffer Pool 污染;MySQL初探_第19张图片

 

 当某一个 SQL 语句扫描了大量的数据时,在 Buffer Pool 空间比较有限的情况下,可能会将 Buffer Pool 里的所有页都替换出去,导致大量热数据被淘汰了,等这些热数据又被再次访问的时候,由于缓存未命中,就会产生大量的磁盘 IO,MySQL 性能就会急剧下降,这个过程被称为 Buffer Pool 污染

MySQL 是这样做的,进入到 young 区域条件增加了一个停留在 old 区域的时间判断只有同时满足「被访问」与「在 old 区域停留时间超过 1 秒」两个条件,才会被插入到 young 区域头部,这样就解决了 Buffer Pool 污染的问题 。

dirty Page 一般都会在一定时机进行批量刷盘。

 

下面几种情况会触发脏页的刷新:

  • 当 redo log 日志满了的情况下,会主动触发脏页刷新到磁盘;
  • Buffer Pool 空间不足时,需要将一部分数据页淘汰掉,如果淘汰的是脏页,需要先将脏页同步到磁盘;
  • MySQL 认为空闲时,后台线程会定期将适量的脏页刷入到磁盘;
  • MySQL 正常关闭之前,会把所有的脏页刷入到磁盘;

在我们开启了慢 SQL 监控后,如果你发现**「偶尔」会出现一些用时稍长的 SQL**,这可能是因为脏页在刷新到磁盘时可能会给数据库带来性能开销,导致数据库操作抖动。

如果间断出现这种现象,就需要调大 Buffer Pool 空间或 redo log 日志的大小。

MySQL的日志

undoLog

  • 实现事务回滚,保障事务的原子性。事务处理过程中,如果出现了错误或者用户执 行了 ROLLBACK 语句,MySQL 可以利用 undo log 中的历史数据将数据恢复到事务开始之前的状态。
  • 实现 MVCC(多版本并发控制)关键因素之一。MVCC 是通过 ReadView + undo log 实现的。undo log 为每条记录保存多份历史数据,MySQL 在执行快照读(普通 select 语句)的时候,会根据事务的 Read View 里的信息,顺着 undo log 的版本链找到满足其可见性的记录。

MySQL初探_第20张图片

MySQL初探_第21张图片 

 

 

redoLog

缓存在 redo log buffer 里的 redo log 还是在内存中,它什么时候刷新到磁盘?

主要有下面几个时机:

  • MySQL 正常关闭时;
  • 当 redo log buffer 中记录的写入量大于 redo log buffer 内存空间的一半时,会触发落盘;
  • InnoDB 的后台线程每隔 1 秒,将 redo log buffer 持久化到磁盘。
  • 每次事务提交时都将缓存在 redo log buffer 里的 redo log 直接持久化到磁盘(这个策略可由 innodb_flush_log_at_trx_commit 参数控制,下面会说)。

除此之外,InnoDB 还提供了另外两种策略,由参数 innodb_flush_log_at_trx_commit 参数控制,可取的值有:0、1、2,默认值为 1,这三个值分别代表的策略如下:

  • 当设置该参数为 0 时,表示每次事务提交时 ,还是将 redo log 留在 redo log buffer 中 ,该模式下在事务提交时不会主动触发写入磁盘的操作。
  • 当设置该参数为 1 时,表示每次事务提交时,都将缓存在 redo log buffer 里的 redo log 直接持久化到磁盘,这样可以保证 MySQL 异常重启之后数据不会丢失。
  • 当设置该参数为 2 时,表示每次事务提交时,都只是缓存在 redo log buffer 里的 redo log 写到 redo log 文件,注意写入到「 redo log 文件」并不意味着写入到了磁盘,因为操作系统的文件系统中有个 Page Cache(如果你想了解 Page Cache,可以看这篇 (opens new window)),Page Cache 是专门用来缓存文件数据的,所以写入「 redo log文件」意味着写入到了操作系统的文件缓存
  • MySQL初探_第22张图片

MySQL初探_第23张图片 

MySQL初探_第24张图片 

binLog 

edo log 和 binlog 有什么区别?

这两个日志有四个区别。

1、适用对象不同:

  • binlog 是 MySQL 的 Server 层实现的日志,所有存储引擎都可以使用;
  • redo log 是 Innodb 存储引擎实现的日志;

2、文件格式不同:

  • binlog 有 3 种格式类型,分别是 STATEMENT(默认格式)、ROW、 MIXED,区别如下:
    • STATEMENT:每一条修改数据的 SQL 都会被记录到 binlog 中(相当于记录了逻辑操作,所以针对这种格式, binlog 可以称为逻辑日志),主从复制中 slave 端再根据 SQL 语句重现。但 STATEMENT 有动态函数的问题,比如你用了 uuid 或者 now 这些函数,你在主库上执行的结果并不是你在从库执行的结果,这种随时在变的函数会导致复制的数据不一致;
    • ROW:记录行数据最终被修改成什么样了(这种格式的日志,就不能称为逻辑日志了),不会出现 STATEMENT 下动态函数的问题。但 ROW 的缺点是每行数据的变化结果都会被记录,比如执行批量 update 语句,更新多少行数据就会产生多少条记录,使 binlog 文件过大,而在 STATEMENT 格式下只会记录一个 update 语句而已;
    • MIXED:包含了 STATEMENT 和 ROW 模式,它会根据不同的情况自动使用 ROW 模式和 STATEMENT 模式;
  • redo log 是物理日志,记录的是在某个数据页做了什么修改,比如对 XXX 表空间中的 YYY 数据页 ZZZ 偏移量的地方做了AAA 更新;

3、写入方式不同:

  • binlog 是追加写,写满一个文件,就创建一个新的文件继续写,不会覆盖以前的日志,保存的是全量的日志。
  • redo log 是循环写,日志空间大小是固定,全部写满就从头开始,保存未被刷入磁盘的脏页日志。

4、用途不同:

  • binlog 用于备份恢复、主从复制;
  • redo log 用于掉电等故障恢复。

如果不小心整个数据库的数据被删除了,能使用 redo log 文件恢复数据吗?

不可以使用 redo log 文件恢复,只能使用 binlog 文件恢复。

因为 redo log 文件是循环写,是会边写边擦除日志的,只记录未被刷入磁盘的数据的物理日志,已经刷入磁盘的数据都会从 redo log 文件里擦除。

binlog 文件保存的是全量的日志,也就是保存了所有数据变更的情况,理论上只要记录在 binlog 上的数据,都可以恢复,所以如果不小心整个数据库的数据被删除了,得用 binlog 文件恢复数据。

主从复制

MySQL初探_第25张图片

MySQL 集群的主从复制过程梳理成 3 个阶段:

  • 写入 Binlog:主库写 binlog 日志,提交事务,并更新本地存储数据。
  • 同步 Binlog:把 binlog 复制到所有从库上,每个从库把 binlog 写到暂存日志中。
  • 回放 Binlog:回放 binlog,并更新存储引擎中的数据。

具体详细过程如下:

  • MySQL 主库在收到客户端提交事务的请求之后,会先写入 binlog,再提交事务,更新存储引擎中的数据,事务提交完成后,返回给客户端“操作成功”的响应。
  • 从库会创建一个专门的 I/O 线程,连接主库的 log dump 线程,来接收主库的 binlog 日志,再把 binlog 信息写入 relay log 的中继日志里,再返回给主库“复制成功”的响应。
  • 从库会创建一个用于回放 binlog 的线程,去读 relay log 中继日志,然后回放 binlog 更新存储引擎中的数据,最终实现主从的数据一致性。

 

  • 同步复制:MySQL 主库提交事务的线程要等待所有从库的复制成功响应,才返回客户端结果。这种方式在实际项目中,基本上没法用,原因有两个:一是性能很差,因为要复制到所有节点才返回响应;二是可用性也很差,主库和所有从库任何一个数据库出问题,都会影响业务。
  • 异步复制(默认模型):MySQL 主库提交事务的线程并不会等待 binlog 同步到各从库,就返回客户端结果。这种模式一旦主库宕机,数据就会发生丢失。
  • 半同步复制:MySQL 5.7 版本之后增加的一种复制方式,介于两者之间,事务线程不用等待所有的从库复制成功响应,只要一部分复制成功响应回来就行,比如一主二从的集群,只要数据成功复制到任意一个从库上,主库的事务线程就可以返回给客户端。这种半同步复制的方式,兼顾了异步复制和同步复制的优点,即使出现主库宕机,至少还有一个从库有最新的数据,不存在数据丢失的风险
 本地二阶段提交

在 MySQL 的 InnoDB 存储引擎中,开启 binlog 的情况下,MySQL 会同时维护 binlog 日志与 InnoDB 的 redo log,为了保证这两个日志的一致性,MySQL 使用了内部 XA 事务

MySQL初探_第26张图片

从图中可看出,事务的提交过程有两个阶段,就是将 redo log 的写入拆成了两个步骤:prepare 和 commit,中间再穿插写入binlog,具体如下:

  • prepare 阶段:将 XID(内部 XA 事务的 ID) 写入到 redo log,同时将 redo log 对应的事务状态设置为 prepare,然后将 redo log 持久化到磁盘(innodb_flush_log_at_trx_commit = 1 的作用);

  • commit 阶段:把 XID 写入到 binlog,然后将 binlog 持久化到磁盘(sync_binlog = 1 的作用),接着调用引擎的提交事务接口,将 redo log 状态设置为 commit,此时该状态并不需要持久化到磁盘,只需要 write 到文件系统的 page cache 中就够了,因为只要 binlog 写磁盘成功,就算 redo log 的状态还是 prepare 也没有关系,一样会被认为事务已经执行成功

 所以说,两阶段提交是以 binlog 写成功为事务提交成功的标识,因为 binlog 写成功了,就意味着能在 binlog 中查找到与 redo log 相同的 XID。

也就是说,事务没提交的时候,redo log 也是可能被持久化到磁盘的

有的同学可能会问,如果 mysql 崩溃了,还没提交事务的 redo log 已经被持久化磁盘了,mysql 重启后,数据不就不一致了?

放心,这种情况 mysql 重启会进行回滚操作,因为事务没提交的时候,binlog 是还没持久化到磁盘的。

所以, redo log 可以在事务没提交之前持久化到磁盘,但是 binlog 必须在事务提交之后,才可以持久化到磁盘

  • 磁盘 I/O 次数高:对于“双1”配置,每个事务提交都会进行两次 fsync(刷盘),一次是 redo log 刷盘,另一次是 binlog 刷盘。
  • 锁竞争激烈:两阶段提交虽然能够保证「单事务」两个日志的内容一致,但在「多事务」的情况下,却不能保证两者的提交顺序一致,因此,在两阶段提交的流程基础上,还需要加一个锁来保证提交的原子性,从而保证多事务的情况下,两个日志的提交顺序一致。
组提交

MySQL 引入了 binlog 组提交(group commit)机制,当有多个事务提交的时候,会将多个 binlog 刷盘操作合并成一个,从而减少磁盘 I/O 的次数,如果说 10 个事务依次排队刷盘的时间成本是 10,那么将这 10 个事务一次性一起刷盘的时间成本则近似于 1。

引入了组提交机制后,prepare 阶段不变,只针对 commit 阶段,将 commit 阶段拆分为三个过程:

  • flush 阶段:多个事务按进入的顺序将 binlog 从 cache 写入文件(不刷盘);
  • sync 阶段:对 binlog 文件做 fsync 操作(多个事务的 binlog 合并一次刷盘);
  • commit 阶段:各个事务按顺序做 InnoDB commit 操作;

上面的每个阶段都有一个队列,每个阶段有锁进行保护,因此保证了事务写入的顺序,第一个进入队列的事务会成为 leader,leader领导所在队列的所有事务,全权负责整队的操作,完成后通知队内其他事务操作结束。

MySQL初探_第27张图片

对每个阶段引入了队列后,锁就只针对每个队列进行保护,不再锁住提交事务的整个过程,可以看的出来,锁粒度减小了,这样就使得多个阶段可以并发执行,从而提升效率

参考资料: MySQL 日志:undo log、redo log、binlog 有什么用? | 小林coding

你可能感兴趣的:(MySQL学习,mysql,数据库)