- 2024 年高教社杯全国大学生数学建模竞赛B题第一问详细解题思路(终版)
柒墨轩
数学建模python
示例代码:fromscipy.statsimportnorm#定义参数p0=0.10#标称次品率alpha=0.05#95%信度下的显著性水平beta=0.10#90%信度下的显著性水平E=0.01#允许的误差范围#计算95%信度下的样本量Z_alpha_2=norm.ppf(1-alpha/2)n_95=((Z_alpha_2*(p0*(1-p0))**0.5)/E)**2#计算90%信度下的样
- 个人笔记--python代码--储存数据
pdc31czy
个人笔记Pythonpython笔记
1.存储Error(txt文件)importnumpyasnp#Errorerror_u=np.linalg.norm(exact_u_current-predict_np_u,2)/np.linalg.norm(exact_u_current,2)error_v=np.linalg.norm(exact_v_current-predict_np_v,2)/np.linalg.norm(exact
- pytorch torch.norm函数介绍
qq_27390023
pytorch人工智能python
torch.norm函数用于计算张量的范数(norm),可以理解为张量的“长度”或“大小”。根据范数的不同类型,它可以衡量不同的张量性质。该函数可以计算向量和矩阵的多种范数,如L1范数、L2范数、无穷范数等。1.函数签名torch.norm(input,p='fro',dim=None,keepdim=False,dtype=None,out=None)input:需要计算范数的输入张量。p:范数
- PyTorch nn.MSELoss() 均方误差损失函数详解和要点提醒
Hoper.J
PyTorch笔记pytorchMSELoss均方误差
文章目录nn.MSELoss()均方误差损失函数参数数学公式元素版本要点附录参考链接nn.MSELoss()均方误差损失函数torch.nn.MSELoss(size_average=None,reduce=None,reduction='mean')Createsacriterionthatmeasuresthemeansquarederror(squaredL2norm)betweeneach
- L1正则和L2正则
wangke
等高线与路径HOML(Hands-OnMachineLearning)上对L1_norm和L2_norm的解释:左上图是L1_norm.背景是损失函数的等高线(圆形),前景是L1_penalty的等高线(菱形),这两个组成了最终的目标函数.在梯度下降的过程中,对于损失函数的梯度为白色点轨迹,对于L1_penalty函数的梯度为黄色点轨迹.可以看出,黄色的点更容易取值为0.因此在考虑两个损失的权衡时
- [从0开始AIGC][LLM]:Pre-Norm or Post-Norm?训练效率还是训练效果?
Way_X
#从0开始AIGCAIGC
Pre-NormorPost-NormPre-NormorPost-Norm1.什么是Pre-Norm和Post-Norm2.为什么Pre-Norm比Post-Norm易于训练2.1Transformer:Attentionisallyourneed-PostNorm2.2Pre-Norm的提出:TransformerswithoutTears:ImprovingtheNormalizationo
- 24.8.24学习心得
kkkkk021106
学习
x.grad.zero_()y=x.sum()y.backward()x.gradtensor([1.,1.,1.,1.])因为y是x中所有元素的总和,所以x的每个元素对y的贡献都是相等的,因此每个元素的梯度都是1。u=y.detach()detach()方法用于从计算图中分离出一个张量,使其不再跟踪历史,这样就不会在反向传播时影响u。范数(Norm)是一个数学概念,在不同的领域有不同的应用,比如
- [stain norm] 病理图片染色处理笔记
PigeonGuan
笔记
失败的stainnorm因为要涉及多张病理图片的stainnorm,所以需要一对一地进行transforms,但是即使这么做了,使用vahadane还是出现了奇怪的染色情况。reference_images:source_images:结果变成了这种玩意:原因分析:reference_image的大小是(2000,2500)但是sources_image的大小为(512,512)可能会导致一些问题
- pytorch | transforms.Compose()函数
DdddJMs__135
分享pytorch人工智能pythontransforms
transforms函数解析:self.norm=transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225]),])torchvision.transforms是pytorch中的图像预处理包。一般用Compose把多个步骤整合到一起:比如说:trans
- 【深度学习】Pytorch 系列教程(三):PyTorch数据结构:2、张量的数学运算(1):向量运算(加减乘除、数乘、内积、外积、范数、广播机制)
QomolangmaH
#PyTorch深度学习pytorch数据结构向量运算范数
文章目录一、前言二、实验环境三、PyTorch数据结构0、分类1、Tensor(张量)1.维度(Dimensions)2.数据类型(DataTypes)3.GPU加速(GPUAcceleration)2、张量的数学运算1.向量运算a.简单运算b.广播操作c.运算函数加法add乘法mul内积(点积)dot外积(叉积)cross范数norm一、前言 本文将介绍PyTorch中张量的数学运算之向量运算
- 【Transformer】Transformer的简单了解:Positional Encoding、Self-attention、Batch 与 Layer Norm 等
magic_ll
transformer深度学习
自从2017年Transformer模型被提出以来,它已经从论文最初的机器翻译领域,转向语音,图像,视频等等方面的应用。最近的SegmentAnything论文提出,阅读论文其中大量的transformer的在图像方面的应用。所以这里还是加紧记录下transformer相关内容。transformer初了解PositionalEncoding(位置编码)Self-attention(自注意力机制)
- 通俗易懂的L0范数和L1范数及其Python实现
superdont
计算机视觉python开发语言人工智能计算机视觉opencv矩阵
定义L0范数(L0-Norm)L0范数并不是真正意义上的一个范数,因为它不满足范数的三角不等式性质,但它在数学优化和信号处理等领域有着实际的应用。L0范数指的是向量中非零元素的个数。它通常用来度量向量的稀疏性。数学上表示为:[|x|_0=\text{numberofnon-zeroelementsin}x]例如,向量(x=[1,0,2,0,3])的L0范数是3,因为该向量中有三个非零元素。L1范数
- PyTorch使用Tricks:梯度裁剪-防止梯度爆炸或梯度消失 !!
JOYCE_Leo16
计算机视觉pytorchpython梯度裁剪深度学习神经网络
文章目录前言1、对参数的梯度进行裁剪,使其不超过一个指定的值2、一个使用的torch.nn.utils.clip_grad_norm_例子3、怎么获得梯度的norm4、什么情况下需要梯度裁剪5、注意事项前言梯度裁剪(GradientClipping)是一种防止梯度爆炸或梯度消失的优化技术,它可以在反向传播过程中对梯度进行缩放或截断,使其保持在一个合理的范围内。梯度裁剪有两种常见的方法:按照梯度的绝
- Psychopy单位
一个好学生_叶纪杉
Psychopy单位在psychopy中,有多种单位可供选择,包括但不限于:'norm','cm','deg','pix'。在编写程序时,可以选择标准单位(normalisedunits),如'norm',因为刺激可以随着窗口的大小自然伸缩。而在正式实验时,最好选择'cm'或'deg',因为在这两种单位小,不管屏幕或窗口如何变化,刺激大小都不变。高度Heightheight单元是相对窗口大小而不是
- 10-29每日一词
Clairelalune现象级
norm:theusualornormalsituation,wayofdoingsthbe/becomethenormBirthsoutofwedlockarebecomingthenorminmanycountries.Bilingualeducationremainsthenormininternationalschoolsthrougoutnon-English-speakingcount
- 机器学习入门之基础概念及线性回归
StarCoder_Yue
算法机器学习学习笔记机器学习线性回归正则化人工智能算法数学
任务目录什么是Machinelearning学习中心极限定理,学习正态分布,学习最大似然估计推导回归Lossfunction学习损失函数与凸函数之间的关系了解全局最优和局部最优学习导数,泰勒展开推导梯度下降公式写出梯度下降的代码学习L2-Norm,L1-Norm,L0-Norm推导正则化公式说明为什么用L1-Norm代替L0-Norm学习为什么只对w/Θ做限制,不对b做限制Question1:Wh
- DL4J中文文档/Keras模型导入/约束
hello风一样的男子
所有的Keras约束都被支持:max_normnon_negunit_normmin_max_norm在KerasConstraintUtils中实现Keras到DL4J约束映射。
- 线程优先级和守护线程
i小雨
线程优先级:Java提供一个线程调度器来监控程序中启动后进入就绪状态的所有线程,线程调度器按照优先级决定调度哪个线程来执行。线程优先级用数字表示,范围从1~10.1、Thread.MIN_PRIORITY=1;2、Thread.MAX_PRIORITY=10;3、Thread.NORM_PRIORITY=5;使用以下方式改变或获取线程优先级:getPriority()setPriority(int
- 2018-10-29
Amberdu
10.29每日一词每日一词在过去的两个月最后发现并没有学的很认真,有的时候只是匆匆打卡,所以今天起打算不仅看,还抄写,多写一遍,认真查词典,对记忆会更有帮助吧!词:normtheusualornormalsituation.wayofdoingsth.InChinamarryingyoungisnolongerthesocialnorm.norm,作为normal的名词形式,意思是,常态,规范,标
- 【推荐系统】DSSM双塔召回
sdbhewfoqi
推荐系统机器学习深度学习数据挖掘
召回综述:【推荐系统】推荐系统主流召回方法综述目录一、DSSM概念二、实践召回模型负例如何选择?是否做Norm?(应用trick)温度超参是什么?-->Loss要带温度超参2.1.美图架构图2.2.淘系架构图优化版本2.3.全民k歌架构图优化方法一、DSSM概念在推荐中的应用1、输入层wordhashing2、中间层(常用的DNN模型)3、匹配层将doc和query(item和user)的embe
- Pytorch入门> 1.1张量的运算广播机制及其他操作
codanlp
Pytorchpytorchpython张量
1.张量运算张量的四则运算:加x+y,减x-y,乘x*y,除x/y其他运算:幂x**y,指数函数torch.exp()对张量所有元素求和.sum()张量的范数torch.norm(),其中tensor必须为浮点数。importtorchu=torch.tensor([3.,4.])torch.norm(u)2.torch.cat()张量的拼接dim=0时按行拼接(加在后面),dim=1时按列拼接(
- L1归一化和L2归一化范数的详解和区别
code_Rocker
algorithm&&dataprocess机器学习L1L2
一句话介绍就是:L1norm就是绝对值相加,又称曼哈顿距离;L2norm就是欧几里德距离之和2范数:在向量范数范围内:1范数就是等于各个值的绝对值相加,这里不贴公式了。从公式上来说:L1的公式:绝对值相加L2的公式:欧几里德距离之和就是样本和标签之差的平方之和两个范数的简单性能对比:在正则化中二者的区别:同时注意由于L1是绝对值之和,因此同一个问题得出的解可能有多个:祭出万年不变的求街区最短路径,
- 机器学习复习(6)——numpy的数学操作
不会写代码!!
人工智能机器学习复习机器学习算法机器学习numpy人工智能
加减法运算#创建两个不同的数组a=np.arange(4)#list(0,1,2,3b=np.array([5,10,15,20])#两个数组做减法运算b-a运行结果:计算数组的平方#b*2代表数组b每个元素乘以2#b**2代表数组b每个元素的2次方b**2运行结果:计算数组的正弦值#计算数组的正弦值np.sin(a)#np.cos(a)运行结果:normalization涉及的其他计算在norm
- Tensorflow2.0笔记 - Tensor的限值clip操作
亦枫Leonlew
TensorFlow2.0笔记tensorflow人工智能python深度学习
本笔记主要记录使用maximum/minimum,clip_by_value和clip_by_norm来进行张量值的限值操作。importtensorflowastfimportnumpyasnptf.__version__#maximum/minimumz做上下界的限值tensor=tf.random.shuffle(tf.range(10))print(tensor)#maximum(x,y,
- tensorflow2.0---笔记2 tensor高阶操作
weixin_43543210
文章目录tensor的合并与分割合并分割数据统计tf.norm(范数)reduce_min/max/meantf.argmax、tf.argmintf.equal(a,b)tf.unique(a)张量排序tf.sort(a,axis=-1,direction="")、tf.argsort(a,direction="")tf.math.top_k(a,k)填充与复制tf.pad(a,[[行维度上,下
- day13 线程优先级 PRIORITY
mollzz
学习Javajava
线程优先级PRIORITYJava提供一个线程调度器来监控程序中启动后进入就绪状态的所有线程,线程调度器按照优先级决定应该调度哪个线程来执行。线程优先级用数字表示,范围从1~10。Thread.MIN_PRIORITY=1;Thread.MAX_PRIORITY=10;Thread.NORM_PRIORITY=1;使用以下方式改变或获取优先级:getPriority().setPriority(i
- 《Effective STL》读书笔记(三):关联容器
9ack!?
c++stl
理解相等(equality)和等价(equivalence)的区别相等的概念是基于operator==的,但是相等不意味着两个对象完全相等,取决于operator==的具体实现。等价关系是以“在已排序的区间中对象值的相对顺序”为基础的。对于两个对象x和y,如果按照关联容器c的排列顺序,每个都不在另一个的前面,那么这两个对象的值在c中就是等价的。针对一个set来说,它的默认比较函数是less,在默认
- 浅谈村落文化的影响
可爱的玫瑰花
/01/昨晚看到一种文化叫村落文化。回忆自己土生土长的故乡,村落文化,也是具有中国特色的吧。几百户村民,住在密集的村落里,村里的什么生活,几乎没有隐私,都有一种约定俗成的norm.红白喜事,小道消息是闲散的午后,村民们的谈资。他们拥有不高的学历,壮年男子都是家里的挣钱主力军。怎么挣钱不管?怎么花钱?红白喜事,约定俗成,花多少钱,都是大家茶余饭后的谈资。这种村落文化,让你没有主观能动性,没有自己的思
- ORB-SLAM中的地图点策略
rookie-rookie-lu
ORB-SLAMORB-SLAM计算机视觉机器人感知
ORB-SLAM中的地图点策略1平均观测方向地图点中维护了一个向量,这个向量代表的含义是关键帧光心到单位方向向量的平均向量vmean=1k∑i=0kvnormv_{mean}=\frac{1}{k}\sum_{i=0}^{k}v_{norm}vmean=k1∑i=0kvnorm,值得注意的是,vmeanv_{mean}vmean并不是单位向量,而是一些单位向量的平均值地图点的平均观测方向给定了一个
- python离散余弦变换(DCT)
微小冷
#scipypythonscipyfftdct离散余弦变换傅里叶变换
文章目录变换类型示例变换类型离散余弦变换(DCT)相当于是傅里叶变换的实部,在scipy.fft中提供了dct函数及其逆变换idct。以dct为例,其函数定义如下,其中type表示余弦变换的类别,norm表示归一化模式。dct(x,type=2,n=None,axis=-1,norm=None,overwrite_x=False,workers=None,orthogonalize=None)dc
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(