数据结构-链表结构-单向链表

链表结构

说到链表结构就不得不提起数据结构,什么是数据结构?就是用来组织和存储数据的某种结构。那么到底是某种结构呢?

数据结构分为:

  • 线性结构
    • 数组,链表,栈,队列
  • 树形结构
    • 二叉树,B树,红黑树等
  • 图形结构
    • 邻接矩阵,邻接表等

那么链表就是我们这本文的主角,之前其实我们都接触过链表就是集合中基于List实现的linkedlist,但是在练习的过程中我发现好多同志只会用,不知道其中原理,知其然而不知其所以然。但是也会有同志说了我会用不就不就醒了,各位凡是要做到精益求精,知其然跟要知其所以然。为实现科技报国我们的祖国就需要这种人才,一起创新创建共创科技大国。

链表结构的定义

什么是链表

在逻辑结构上一个挨一个的数据,但是在实际存储时所在的内存地址却并不连续,相反数据随机分布在内存中的各个位置。

数据结构-链表结构-单向链表_第1张图片

通过数据的指针指向下一个数据,这种存储结构称为链式存储,而这种链式存储所生成的表就是链表

数据结构-链表结构-单向链表_第2张图片

链表分类

  • 单向链表
  • 双向链表
  • 双向循环链表

单向链表

什么是单向链表

上面说到了什么是链表,那么在单向链表中我们将数据分为两个区域

  • 数据域:存储数据
  • 指针域:存储下一个节点的内存地址
    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WFVtGpFY-1690775932878)(E:\Java笔记\数据结构\线形结构\链表结构.assets\image-20230731095437329.png)]

在链表中它有一个专业名字叫做:节点。

数据结构-链表结构-单向链表_第3张图片

一个节点指向下一个节点,这种链式结构称为单向链表

数据结构-链表结构-单向链表_第4张图片

在单向链表中,链表的第一个节点称为首元节点

数据结构-链表结构-单向链表_第5张图片

链表的最后一个节点称为尾节点

数据结构-链表结构-单向链表_第6张图片

中间的这个节点的前一个节点称为前驱
数据结构-链表结构-单向链表_第7张图片

中间的这个节点的后一个节点称为后继

数据结构-链表结构-单向链表_第8张图片

通常在链表的前面会有一个节点称为头节点,当然头节点不是必须存在的。

  • 头节点的作用是:用来存储链表的长度

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jXLTPxvG-1690775932882)(E:\Java笔记\数据结构\线形结构\链表结构.assets\image-20230731100239606.png)]

数据结构-链表结构-单向链表_第9张图片

在每一个链表中都会配备一个头指针,指针始终指向第一个节点,如果有链表中配备头节点则指向头节点,如果没有配备头节点则指向首元节点

数据结构-链表结构-单向链表_第10张图片

头指针的定义是:用于在链表中挪动指针查找数据,直到找到对应的数据

数据结构-链表结构-单向链表_第11张图片

单向链表的功能

数据结构-链表结构-单向链表_第12张图片

    • 向链表的尾节点添加节点

      • 将新添加节点的内存地址存放到该链表尾节点的指针域中。通俗的讲:将尾节点的指针域指向新添加的节点

      • 此时尾节点就是新添加的这个节点

        数据结构-链表结构-单向链表_第13张图片

    • 向链表的首元节点之前添加节点

      • 将链表的首元节点的内存地址存放到新添加节点的指针域中。通俗的讲:新节点的指针指向首元节点

      • 此时首元节点是新添加的这个节点

        数据结构-链表结构-单向链表_第14张图片

    • 向链表中间添加节点

      • 将新添加节点的内存地址存放到前驱的指针域中,新添加节点的指针域存放后继的内存地址。通俗的讲:修改前驱的指针方向指向新添加的节点,新添加的节点执行后继即可

      数据结构-链表结构-单向链表_第15张图片

    • 删除尾节点

      • 尾节点的前驱的指针域不在存储尾节点的内存地址。通俗的讲:尾节点的指针域不在指向尾节点
    • 删除首元节点

      • 首元节点的指针域不存放后继的内存地址。通俗的讲:首元节点的指针与不在指向后继节点
    • 删除中间的某个节点

      • 删除节点的前驱指针域不再存放删除节点的内存地址,删除节点的指针域不再存储后继的内存地址,通俗的讲:删除节点的前驱指向删除节点的后继

        数据结构-链表结构-单向链表_第16张图片

      注意:被删除的节点称之为:野节点,这并不是真正意义上的删除,它在内存中依旧存在。那么野节点的最终归宿是被JVM的GC(垃圾回收器)所回收,也就是释放该节点的内存空间,这才是真正意义上的删除

      额外知识:java中的垃圾回收器(Garbage Collector,GC)负责管理内存的分配和释放。当一个对象没有任何引用指向它时,它就变得不可达,而垃圾回收器会将其标记为垃圾对象,并在适当的时候回收该对象所占用的内存空间。这个过程称为垃圾回收。

    • 挪动指针找到要修改的节点,之后讲修改节点的数据域中的数据修改掉
    • 挪动指针找到要所要查找的数据。

特点

  • 节点在存储器中的位置是任意的,即逻辑上相邻的数据元素在物理上不一定相邻。

  • 数据元素的个数可以自由扩充,插入,删除,只需要修改节点的指针方向,效率高

  • 修改和查找节点数据需要挪动指针,按照节点的顺序进行依次查找或者修改,效率比较低

与数组的区别

回顾数组

数组的功能

    • 数据不能超过定义的数组长度
    • 数据少于定义数组的长度会造成内存浪费
    • 数组中间添加数据会将之后的数据内存位置往后挪动

    数据结构-链表结构-单向链表_第17张图片

区别

数据结构-链表结构-单向链表_第18张图片

实现单项链表

MyList
/**
 * @CreateName SIN
 * @CreateDate 2023/07/27 16:28
 * @description 定义链表功能规范,避免子类编码随意性。同时也实现了程序的解耦,提高代码的可维护性。
 */
//泛型E任何数据类型
public interface MyList<E> {
    //添加节点数据
    void add(E element);
    //获取节点数据(根据具体的指针找到对应的数据)
    E get(int index);
    //获取链表的长度
    int size();
    //根据指针移除节点
    E remove(int index);
    //修改节点数据
    E set(int index,E element);
}

MyLinkedList
package com.sin.linkedList;

/**
 * @CreateName SIN
 * @CreateDate 2023/07/27 16:35
 * @description
 */
public class MyLinkedList<E> implements MyList<E>{

    // 存放链表的头节点
    private Node head;

    // 记录链表的长度
    private int size;

    /**
     * 向链表中添加节点
     * @param element 添加的节点
     */
    @Override
    public void add(E element) {
        //创建一个新的节点,存储传入的元素
        Node<E> node = new Node<E>(element,null);
        //获取链表尾节点
        Node tail = getTail();
        //如果链表为空,
        if (tail == null){
            //将新节点设置为头节点
            this.head = node;
        }else{
            //否则,在尾节点后面添加新节点
            tail.next = node;
        }
        //记录元素的个数
        this.size++;
    }

    /**
     * 获取尾节点
     * @return 返回尾节点
     */
    private Node getTail(){
        //判断当前头节点是否为空
        if(this.head == null){
            return null;
        }
        //遍历链表
        //从头节点开始遍历链表
        Node node = this.head;
        while (true){
            //如果下一个节点为空,则表示当前节点为尾节点,则跳出循环
            if(node.next == null){
                break;
            }
            //在循环的过程中,移动指针,指向下一个节点
            node = node.next;
        }
        //返回尾节点
        return node;
    }

    /**
     * 根据指针获取节点数据
     * @param index
     * @return 返回节点数据
     */
    @Override
    public E get(int index) {
        //1,校验index的合法性
        pointerIndex(index);
        //2,根据具体位置获取对应的节点数据
        Node<E> node = getNode(index);
        //3,将节点中的元素返回
        return node.item;
    }

    /**
     * 校验所给定的指针是否在链表的有效范围内
     * @param index
     */
    private void pointerIndex(int index){
        // 大于等于0并且小于链表长度
        if (!(index >= 0 && index < this.size)){
            //获取最大的索引指
            int a = this.size-1;
            // 抛出索引越界异常,显示错误信息
            throw new IndexOutOfBoundsException("你输入的指针为:"+index + "最大指针为:"+a);
        }
    }

    /**
     * 根据指针获取节点
     * @return 返回给定索引处的节点
     */
    private Node getNode(int index){
        //从头节点开始遍历链表
        Node<E> node = this.head;
        //移动指针,指向下一个节点,直到所给定的索引位置
        for (int i = 0;i< index;i++){
            node = node.next;
        }
        //返回给定索引处的节点
        return node;
    }

    @Override
    public int size() {
        return this.size;
    }

    @Override
    public E remove(int index) {
        //校验index的合法性
        this.pointerIndex(index);

        //根据index指针找到该节点对象数据
        Node<E> node = this.getNode(index);
        //获取该节点对象中的元素
        E item = node.item;
        //向该节点对象中单向链表删除

        //判断当前删除的节点是否为头节点
        if (this.head == node){
            this.head = node.next;//如果是删除头节点,头节点的下一个节点,赋值给了头节点
        }else {
            Node<E> node1 = this.head;//拿头节点
            for (int i = 0 ; i<index - 1 ; i++){
                node1=node1.next;
            }
            node1.next = node.next;//将节点的下一个节点赋值给该节点
        }
        node.next = null;

        this.size -- ;//删除成功长度减一

        return item;//返回元素
    }

    /**
     * 修改节点数据
     * @param index 挪动指针
     * @return 返回修好的值
     */
    @Override
    public E set(int index,E element) {
        //校验index的合法性
        pointerIndex(index);
        //获取index处的节点
        Node<E> node = getNode(index);
        //将节点值数据进行赋值替换
        return node.item = element;
    }
    /**
     * 使用内部类定义单向链表中的节点对象
     *
     */
    class Node<E>{
        //数据域
        private E item;//存储的数据

        //指针域
        private Node next;//存储下一个节点对象的地址

        //无参构造方法
        public Node(){

        }
        //全参构造方法
        public Node(E item,Node next){
            this.item = item;
            this.next = next;
        }

    }
}

测试
public static void main(String[] args) {
    MyLinkedList myLinkedList = new MyLinkedList();

    myLinkedList.add(12);
    myLinkedList.add(13);
    myLinkedList.add(14);
    myLinkedList.add(15);
    myLinkedList.add(16);
    System.out.println("根据指针找到值"+myLinkedList.get(4));
    System.out.println("删除的节点"+myLinkedList.remove(0));
    System.out.println(myLinkedList);
    System.out.println(myLinkedList.size());
    System.out.println(myLinkedList.set(3,"张三");


    for (int i=0;i<myLinkedList.size(); i++){

        System.out.print(myLinkedList.get(i)+",");
    }

}

你可能感兴趣的:(数据结构,数据结构,链表,前端)