- PB 级别的大数据?
百态老人
大数据
在当今数字化时代,PB级别大数据正日益成为各领域关注的焦点。PB即佩他字节,1PB约等于1000TB或100万GB,代表着极为庞大的数据存储容量。中国科研团队在超大容量超分辨三维光存储研究中取得突破性进展。上海光学精密机械研究所与上海理工大学等科研单位合作,利用国际首创的双光束调控聚集诱导发光超分辨光存储技术,实现了点尺寸为54nm、道间距为70nm的超分辨数据存储,并完成了100层的多层记录,单
- 腾讯云大数据套件TBDS与阿里云大数据能力产品对比
奋力向前123
数据库java人工智能腾讯云大数据阿里云
前言博主在接触大数据方向研究的时候是在2016年,那时候正是大数据概念非常火热的一个时间段,最著名的Google的3篇论文。GoogleFS、MapReduce、BigTable,奠定了大数据框架产品的基础。Google文件系统,计算框架和存储框架。往后所有的大数据产品和过程域无一不是在三个模块的基础上进行搭建,迭代,完善。我们最开始使用的都是开源的产品,比如hadoop,HDSF,MAPRedu
- R 语言 必备 十大资源
后端
引言R是进行统计计算和数据分析的热门编程语言之一,广泛应用于数据科学家、研究者和统计学家之间,用于处理大数据、执行复杂分析和结果可视化。如果你是R的新手或希望提升你的R技能,这里有一些核心资源可以助你一臂之力,无论是从基础学起还是提高现有水平,包括官方站点、知名学府和互动式学习平台。1.R项目官网(r-project.org)R项目的官方网站是开启R学习之旅的首选,它提供免费的R软件、文档、教程和
- Java NIO基础与实战:如何提升IO操作性能
薛伟同学
Netty:高性能网络编程技巧javanio
JavaNIO概述JavaNIO(新I/O)是Java提供的一个更为高效的I/O处理框架。JavaNIO(NewI/O)是对传统I/O(java.io)模型的改进,它引入了非阻塞I/O操作和面向缓冲区的数据读写方式,解决了传统I/O模型中的性能瓶颈。NIO的设计目标是使I/O操作更加高效,特别是在大数据量、高并发情况下,能够充分利用操作系统的底层I/O多路复用机制。JavaNIO的核心概念包括:B
- 信息技术革新引领时代变革
JiYan_xiaohei
业界资讯
信息技术革新引领时代变革一、信息技术的飞速发展1.信息技术的概念及重要性信息技术,即信息的获取、传输、存储、处理和应用等技术的综合,已经成为现代社会不可或缺的基础设施。信息技术的飞速发展极大地改变了人们的生活方式和工作模式,推动了社会进步。2.信息技术的快速发展现状近年来,人工智能、大数据、云计算等前沿技术不断突破,展现出强大的潜力。这些新技术的出现不仅改变了数据处理和分析的方式,还催生了新的产业
- 信息技术革新引领社会变革
JiYan_yellow
业界资讯
信息技术革新引领社会变革一、信息技术推动数字化转型随着信息技术的迅猛发展,我们正处在一个数字化的时代。信息技术在推动产业数字化转型方面发挥着重要作用。云计算、大数据、人工智能等先进技术的应用,使得企业能够实现更高效的生产和运营。例如,在制造业领域,智能制造技术能够提高生产效率和质量,降低运营成本。此外,信息技术还在促进供应链管理、市场营销等环节的数字化转型,为企业提供更广阔的发展空间。信息技术还深
- 人工智能之推荐系统实战系列(协同过滤,矩阵分解,FM与DeepFM算法)
weixin_58351028
人工智能深度学习神经网络算法机器学习
一.推荐系统介绍和应用(1)推荐系统通俗解读推荐系统就是来了就别想走了。例如在大数据时代中京东越买越想买,抖音越刷越是自己喜欢的东西,微博越刷越过瘾。(2).推荐系统发展简介1)推荐系统无处不在,它是根据用户的行为决定推荐的内容。用户每天在互联网中都会留下足迹,这样就会越来越多的用户画像。2)为什么要推荐系统卖的好的商品就那几种,其它就不管了吗?答案是否定的。80%的销售来自20%的热门商品,要想
- 基于neo4j知识图谱+flask的大数据医疗领域知识问答系统(完整源码+源码解析+开发文档+视频讲解等资料
2401_84185074
neo4j知识图谱flask
1.classMedicalSpider::定义了一个名为MedicalSpider的类。2.def**init**(self)::这是类的构造函数,用于在创建类的实例时进行初始化。在初始化过程中,建立了与MongoDB数据库的连接,并选择了名为‘medical’的数据库和名为‘data’的集合。3.definsert\_data(self,data)::这是一个方法,用于插入数据到MongoDB
- 基于分布式架构的毕业设计题目50例
love_java_code
计算机专业毕业设计题目分布式架构系统架构
基于分布式架构的毕业设计题目1-10题1、基于分布式架构的网络考试系统的设计2、基于分布式架构的融合客户数据中心探讨3、基于分布式架构的内网监控系统的应用与研究4、基于分布式架构的铁路企业社会保障管理信息系统设计5、基于分布式架构打造证券交易新核心6、基于分布式架构的融合用户数据中心部署方案研究7、基于分布式架构的大数据建模实践8、基于分布式架构的通航运营管理系统研究9、基于分布式架构的网络流量分
- 数据清洗与预处理:提升数据质量的关键步骤
Echo_Wish
实战高阶大数据pythonspark大数据
数据清洗与预处理:提升数据质量的关键步骤在大数据时代,数据已成为企业和组织的重要资产。然而,数据的价值取决于其质量。高质量的数据可以支持有效的决策和精确的分析,而低质量的数据则可能导致误导性的结论和错误的决策。因此,数据清洗与预处理成为了数据分析过程中不可或缺的关键步骤。一、数据质量的挑战在实际应用中,数据通常来自多个来源,如传感器、日志文件、用户输入等。这些数据可能存在以下问题:缺失值(Miss
- Java与Python的集成与性能对比研究
向哆哆
Java入门到精通javapython开发语言
Java与Python的集成与性能对比研究随着科技的不断进步,Java和Python这两种编程语言在不同领域得到了广泛应用。Java凭借其高性能、平台独立性和庞大的生态系统,广泛应用于企业级应用、Web开发和大数据处理等领域。而Python因其简洁易学、灵活性强,在数据科学、人工智能和快速原型开发方面具有显著优势。虽然这两种语言在设计上有很大的差异,但它们可以通过多种方式进行集成,结合各自的优势,
- 无人机遥感在农林信息提取中的实现方法与GIS融合制图教程
岁月如歌,青春不败
生态遥感无人机农业科学林业科学GIS制图遥感生态学
遥感技术作为一种空间大数据手段,能够从多时、多维、多地等角度,获取大量的农情数据。数据具有面状、实时、非接触、无伤检测等显著优势,是智慧农业必须采用的重要技术之一。一:综合态势分析1.1研究区及作物品种分析(1)形态指标分析(2)生理生化指标分析(3)胁迫指标分析(4)产量指标分析(5)综合分析1.2无人机平台分析:析目前常用于农林行业的无人机平台。1.3无人机机载传感器分析:析目前常用于农林行业
- Paimon实战 -- paimon原理解析
阿华田512
Paimon学习必读系列paimon数据湖paimon介绍flink写入
一.简介ApachePaimon原名FlinkTableStore,2022年1月在ApacheFlink社区从零开始研发,Flink社区希望能够将Flink的Streaming实时计算能力和Lakehouse新架构优势进一步结合,促进数据在数据湖上真正实时流动起来,并为用户提供实时离线一体化的开发体验。二.基本概念1、快照(Snapshot)快照捕获表在某个时间点的状态。用户可以通过最新的快照访
- paimon实战 --核心原理和Flink应用进阶
阿华田512
Paimon学习必读系列Flink学习必读系列flink大数据flink读写paimon数据湖
简介Flink社区希望能够将Flink的Streaming实时计算能力和Lakehouse新架构优势进一步结合,推出新一代的StreamingLakehouse技术,促进数据在数据湖上真正实时流动起来,并为用户提供实时离线一体化的开发体验。Flink社区内部孵化了FlinkTableStore(简称FTS)子项目,一个真正面向Streaming以及Realtime的数据湖存储项目。2023年3月1
- 【Apache Paimon】-- 16 -- 利用 paimon-flink-action 同步 kafka 数据到 hive paimon 表中
oo寻梦in记
ApachePaimonapacheflinkkafkaapachepaimonpaimon
目录引言CDC技术概述2.1什么是CDC2.2CDC的应用场景Kafka作为CDC数据源的原理与优势3.1Kafka的基本架构3.2Kafka在CDC中的角色
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- 基于联邦学习的政务大数据平台应用研究
宋罗世家技术屋
计算机软件及理论发展专栏政务大数据
摘要当前数字政府建设已进入深水区,政务大数据平台作为数据底座支撑各类政务信息化应用,其隐私数据的安全性和合规性一直被业界广泛关注。联邦学习是一类解决数据孤岛的重要方法,基于联邦学习的政务一体化大数据平台应用具有较高的研究价值。首先,介绍政务大数据平台及联邦学习应用现状;然后,分析政务大数据平台面临的隐私数据的采集、分类分级、共享三大管理挑战;接着,阐述基于联邦学习的推荐算法和隐私集合求交技术的解决
- 销售易、极兔、珍客CRM:产品功能特色与企业适用性分析
程序员机器学习人工智能
销售易CRM产品功能移动化与社交化:销售易CRM支持iOS、Android等主流操作系统,销售人员可以随时随地访问客户信息、更新销售进度、创建任务等。同时,它还具备社交化功能,能够整合企业内部的社交网络,促进员工之间的协作与沟通。AI与大数据驱动:销售易CRM融合了人工智能和大数据技术,通过智能数据分析,帮助企业洞察客户行为和需求,预测销售趋势。例如,AI可以对客户数据进行深度挖掘,识别出高价值客
- 政务数据标识技术研究进展及下一代政务数据标识体系
宋罗世家技术屋
计算机软件及理论发展专栏政务
摘要政务数据标识是建设全国一体化政务大数据体系的一项基础性工作。对数据标识技术的研究进展进行了总结,比较了不同数据标识技术编码规则的异同,并进一步总结了政务数据标识及应用进展。结合政务数据所具有的权责明确、安全性要求高、兼容性需求强等特点,提出了下一代政务数据标识体系Gcode。Gcode由外部码、内部码和安全码3个部分组成。其中,外部码兼容了统一社会信息用代码,内部码建立了“机构部门-系统-数据
- 浅谈Java中Excel导入导出的技术详解
foolhuman
javaexcel
引言在Java开发中,Excel文件的导入导出是一个常见的需求。无论是数据批量处理、报表生成还是数据迁移,Excel都是一个不可或缺的工具。然而,Excel导入导出过程中涉及到的技术细节和潜在问题常常让开发者感到头疼。本文将从技术难点出发,结合代码示例,详细介绍如何在Java中高效地实现Excel的导入导出功能。技术难点分析在Excel导入导出过程中,以下几个技术难点需要特别关注:大数据量处理当处
- 大数据SQL调优专题——引入
黄雪超
技术基础大数据
从巴别塔开始我们先从一个神话故事开始本专栏的内容:在人类的早期,世界上的所有人说着同一种语言,彼此之间沟通毫无障碍。这种统一的语言让人们心生野心,他们决定联合起来建造一座高耸入云的塔,这座塔就是巴别塔。人们希望通过这座塔能够直达天堂,以此展示他们的力量和智慧。然而,他们的行为引起了上帝的关注。上帝看到人类如此团结,担心他们一旦成功建造巴别塔,将会变得无比强大,甚至可能威胁到神的权威。于是,上帝决定
- Hive数据库及表操作
亦576
hive数据库hadoop
数仓原理以及Hive入门:数仓原理:数仓(DataWarehouse)是用于支持企业决策的数据存储和分析系统。数仓原理包括以下几个方面:1.数据抽取(Extraction):从各个业务系统中抽取数据,并进行清洗和转换,以适应数仓的数据模型。2.数据存储(Storage):将清洗和转换后的数据存储到数仓中,通常使用关系型数据库或大数据存储技术来存储大量的数据。3.数据整合(Integration):
- 开源mes系统_如何快速构建基于MES的开源云平台
weixin_39926613
开源mes系统
导读本文为2019工业互联网平台活动盘点文章,同时也欢迎广大工业互联网平台企业参与本次盘点。具体参与方式可加编辑微信号(13517202453)详细咨询。随着智能制造转型战略的持续推进,MES作为承载智能化生产制造过程的核心系统正在受到越来越多企业的关注。与此同时,工业互联网、大数据、云计算等技术的飞速发展和日渐成熟,正在不断赋予MES更多新功能。由此推动MES朝着智能化、平台化、云化的方向发展。
- 新型大数据架构之湖仓一体(Lakehouse)架构特性说明——Lakehouse 架构(一)
m0_74825238
面试学习路线阿里巴巴大数据架构
文章目录为什么需要新的数据架构?湖仓一体(Lakehouse)——新的大数据架构模式同时具备数仓与数据湖的优点湖仓一体架构存储层计算层湖仓一体特性单一存储拥有数据仓库的查询性能存算分离开放式架构支持各种数据源类型支持各种使用方式架构简单数据共享schema过滤和推演时间回溯为什么需要新的数据架构?数据仓库和数据湖一直是实现数据平台最流行的架构,然而,过去几年,社区一直在努力利用不同的数据架构方法来
- flink实时集成利器 - apache seatunnel - 核心架构详解
24k小善
flinkapache架构
SeaTunnel(原名Waterdrop)是一个分布式、高性能、易扩展的数据集成平台,专注于大数据领域的数据同步、数据迁移和数据转换。它支持多种数据源和数据目标,并可以与ApacheFlink、Spark等计算引擎集成。以下是SeaTunnel的核心架构详解:SeaTunnel核心架构SeaTunnel的架构设计分为以下几个核心模块:1.数据源(Source)功能:负责从外部系统读取数据。支持的
- Flink怎么保证Exactly - Once 语义
我明天再来学Web渗透
后端技术总结flink大数据开源开发语言
Exactly-Once语义是消息处理领域中的一种严格数据处理语义,指每条数据都只会被精确消费和处理一次,既不会丢失,也不会重复。以下从消息传递语义对比、实现方式、应用场景等方面详细介绍:与其他消息传递语义对比在消息传递中,常见三种语义:最多一次(at-most-once):消息可能丢失,但绝不会重复。至少一次(at-least-once):消息不会丢失,但可能重复。精确一次(exactly-on
- Flink内存配置和优化
Leo_Hu666
flink大数据
在ApacheFlink1.18的Standalone集群中,内存设置是一个关键配置,它直接影响集群的性能和稳定性。Flink的内存配置主要包括JobManager和TaskManager的内存分配。以下是如何在Standalone模式下配置内存的详细说明。JobManager内存配置JobManager是Flink集群的主节点,负责协调任务调度和资源管理。它的内存配置可以通过以下参数进行调整:配
- Mall4j商城实战 - 部署 elasticsearch、kibana 数据搜索
yueerba126
Mall4j商城实战elasticsearchjenkins大数据
ElasticsearchElasticsearch概览分布式搜索和分析引擎。实时处理大数据。支持复杂查询。核心组件索引(Index)存储相似文档集合的容器。文档(Document)数据存储的基本单元,JSON格式。倒排索引(InvertedIndex)实现快速全文搜索的数据结构。节点(Node)单个Elasticsearch实例,集群的一部分。️基础操作创建、删除索引。查看索引结构(Mappin
- Flink入门-通过DataStream Api实现消费欺诈检测
似水_逆行
Flinkflink大数据
1信用卡消费欺诈信用卡消费欺诈是指在信用卡的使用过程中,通过不正当手段获取或使用信用卡资金,侵犯他人或银行的财产权益的行为。这种行为可能包括但不限于盗刷、伪造信用卡、冒用他人信用卡、恶意透支等2模拟场景我们模拟不同账户的信用卡消费记录,通过分析实时的消费记录,针对常见的消费欺诈进行检测,检测出来的欺诈行为进行告警。3核心流程与代码1)通过TransactionSource构建消费记录,主要包含ac
- Flink-DataStream快速上手
code@fzk
大数据flink大数据java
文章目录1.安装部署安装2.执行任务Standalone模式启动/停止执行任务Yarn模式Session-cluster模式启动yarn-session执行任务Per-Job-Cluster模式3.执行环境EnvironmentgetExecutionEnvironment(常用)createLocalEnvironmentcreateRemoteEnvironmentSource、SinkTra
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s