- 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统_bert+lstm
2301_76348014
程序员深度学习大数据知识图谱
文章目录大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介NavicatPremium15简介Layui简介Python语言介绍MySQL数据库深度学习六、核心理论贪心算法A
- 蓝桥杯备考:贪心算法简介
无敌大饺子 1
贪心算法算法
贪心算法就是企图用局部最优的策略找出全局最优步骤就是1,把解决问题的过程分成若干步。2,每一步都选择当前看起来最优的解法。3,希望得到全局最优的结果比较经典的例题一个就是找零问题钞票种类[20,10,5,1]用最小的张数找零46的时候,先把最大的20的找完,然后找10的,再找5的,最后再找1的直到不能再找,过程就是46:找零20---》26:找零20-----》6:找零5-----》1:找零1--
- 备战蓝桥杯:贪心算法之货仓选址
无敌大饺子 1
贪心算法算法
当我们货仓选址在最中间的时候,货仓到每家商店的距离最短#include#include#includetypedeflonglongLL;usingnamespacestd;intn;constintN=1e5+10;LLa[N];intmain(){cin>>n;for(inti=1;i>a[i];sort(a+1,a+1+n);LLret=0;for(inti=1;i=|a-b|我们的代码也可
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- 预测股票走势的ai模型
roxxo
AI模型人工智能深度学习金融
AI股票走势预测模型用深度学习+时间序列分析来构建一个股票预测AI,基于历史数据预测未来走势。1.关键功能✅AI选股(基于财务数据+技术指标)✅股票走势预测(LSTM/Transformer)✅智能筛选高增长潜力股✅可视化分析2.关键技术数据来源:YahooFinance/AlphaVantage财务分析:PE、EPS、ROE、PB、成交量机器学习选股:随机森林/XGBoost深度学习预测:LST
- 算法学习笔记之贪心算法
threesevens
算法与数据结构算法笔记贪心算法
导引(硕鼠的交易)硕鼠准备了M磅猫粮与看守仓库的猫交易奶酪。仓库有N个房间,第i个房间有J[i]磅奶酪并需要F[i]磅猫粮交换,硕鼠可以按比例来交换,不必交换所有的奶酪计算硕鼠最多能得到多少磅奶酪。输入M和N表示猫粮数量和房间数量,随后输入N个房间,每个房间包括奶酪数和猫粮数Input 53 72 43 52 -1-1Output 13.333解法:计算每个房间的奶酪与猫粮之比,比值越大硕鼠收益越
- 牛客网面试必刷TOP101-010贪心算法BM96 主持人调度(二)
bingw0114
贪心算法算法
描述有n个活动即将举办,每个活动都有开始时间与活动的结束时间,第i个活动的开始时间是starti,第i个活动的结束时间是endi,举办某个活动就需要为该活动准备一个活动主持人。一位活动主持人在同一时间只能参与一个活动。并且活动主持人需要全程参与活动,换句话说,一个主持人参与了第i个活动,那么该主持人在(starti,endi)这个时间段不能参与其他任何活动。求为了成功举办这n个活动,最少需要多少名
- 代码随想录 Day 32 |【第八章 贪心算法 part 01】理论基础、455.分发饼干、376. 摆动序列、53. 最大子序和
Accept17
贪心算法算法
一、理论基础代码随想录1.什么是贪心贪心的本质是选择每一阶段的局部最优,从而达到全局最优。2.贪心的解题步骤将问题分解为若干个子问题找出适合的贪心策略求解每一个子问题的最优解将局部最优解堆叠成全局最优解二、455.分发饼干代码随想录1.解题思路尽量用最大的饼干去满足胃口大的孩子。2.代码实现(1)因为是用大饼干满足胃口大的孩子,所以对饼干、孩子胃口数组排序。定义一个result变量,用于记录喂饱了
- Python中的决策树算法探索
Soft_Leader
算法python决策树
在Python中,决策树算法是一种常用的机器学习技术,用于分类和回归问题。下面我们将探索如何使用Python中的scikit-learn库来实现决策树算法,并简要介绍其基本概念和用法。1.安装必要的库如果你还没有安装scikit-learn库,你可以使用pip来安装它:bash复制代码pipinstall-Uscikit-learn2.导入必要的库和模块python复制代码fromsklearn.
- 大模型稀疏动态架构
deepdata_cn
垂域模型语言模型
DeepSeek应用稀疏动态架构(SparseDynamicArchitecture)是其大模型技术的核心创新点。大模型稀疏动态架构是一种用于构建大规模人工智能模型的先进架构,整体提高了模型的效率、灵活性和性能。一、发展历程1.早期探索阶段起源基础:20世纪8090年代的早期机器学习主要集中在决策树、SVM、KNN等经典算法,模型规模小,依赖手工特征。之后在2006年GeoffreyHinton提
- 力扣455.分发饼干贪心算法
Leosaf
力扣算法python
先理解题意,理解完了之后我们会发现排序后会更好做,排完序之后我们依次来比较大小不就好了吗!方法很简单,代码如下g.sort()s.sort()glen,slen=len(g),len(s)gleft=sleft=n=0wh
- 通俗易懂:贪心算法(一):分配问题 (力扣455分发饼干 和135分发糖果)
比特的一天
leetcode详解算法数据结构贪心算法面试
看完本文,可以顺便解决leetcode以下两个题目:455.分发饼干(简单)135.分发糖果(困难)一、通俗易懂的贪心算法|思想贪心算法就是采用贪心的策略,保证每一次的操作都是局部最优的,从而使得结果是全局最优的。比如,A、B、C、都很喜欢吃橘子,A可以吃5个、B可以吃3个、C可以吃1个;但是现在只有7个橘子,问最多几个人可以吃饱;我们选用的贪心策略就是,吃的少的人先吃,尽量先使用量少的人吃饱,所
- 分发饼干(力扣455)
qy发大财
leetcode算法职场和发展
从这道题开始我们就进入贪心算法的学习了。这个算法没有固定的套路,甚至题目之间的联系也很少,基本上每一道题都要当新题来写。我们能做的只有见多识广,这样才有机会在考试中根据以往经验解决贪心的题目。贪心的本质上就是找到局部最优解,最终的答案就是全局最优解。这道题要求尽可能分到更多的小孩,那么所谓的贪心究竟贪在什么地方呢?我们可以先将胃口和饼干的数组进行从小到大的排序,让小胃口的小孩吃到尽可能小的饼干,只
- 零基础入门机器学习 -- 第二章机器学习的基本流程
山海青风
#机器学习机器学习python人工智能
1.机器学习的五个基本步骤在机器学习项目中,我们通常遵循以下步骤:收集数据:获取数据集,例如从文件、数据库或在线资源。清洗和预处理数据:处理缺失值、去除异常数据、转换数据格式等。选择合适的模型:不同任务适合不同模型,如分类使用逻辑回归、决策树等。训练模型:让模型从数据中学习模式并调整参数。评估模型:检查模型的准确率,以判断效果是否良好。本章会通过电影评分预测的示例,帮助你快速体验从数据到模型的基本
- 强化学习算法:蒙特卡洛树搜索 (Monte Carlo Tree Search) 原理与代码实例讲解
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
强化学习算法:蒙特卡洛树搜索(MonteCarloTreeSearch)原理与代码实例讲解关键词:蒙特卡洛树搜索,强化学习,决策树,搜索算法,博弈策略,应用场景,代码实现1.背景介绍1.1问题由来强化学习(ReinforcementLearning,RL)是人工智能领域的一个核心分支,专注于通过与环境交互,学习最优策略以实现特定目标。传统的强化学习算法,如Q-learning、SARSA等,通常依
- 贪心算法经典例题题型
幸愉信奥
#贪心贪心算法
文章目录区间选点最大不相交区间数量区间分组区间覆盖合并果子石子合并(动态规划解决)排队打水货仓选址耍杂技的牛总结区间选点题目大意给定NNN个闭区间[ai,bi][a_i,b_i][ai,bi],请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。输出选择的点的最小数量。位于区间端点上的点也算作区间内。输入格式第一行包含整数NNN,表示区间数。接下来NNN行,每行包含两个整数ai,bia
- 【LeetCode 刷题】贪心算法(3)-序列问题
Bran_Liu
LeetCodeleetcode贪心算法算法python
此博客为《代码随想录》贪心算法章节的学习笔记,主要内容为贪心算法序列问题的相关题目解析。文章目录376.摆动序列738.单调递增的数字53.最大子序和122.买卖股票的最佳时机II376.摆动序列题目链接classSolution:defwiggleMaxLength(self,nums:List[int])->int:n=len(nums)ifnnums[i-1]:trend=1res+=1re
- 关于队列和贪心算法的一个投票经典问题
CodeWizardMaster
贪心算法算法数据结构
参议院里有两个阵营:Radiant和Dire.参议院由来自两派的参议员组成。现在参议院希望对一个改变作出决定。他们以一个基于轮为过程的投票进行。在每一轮中,每一位参议员都可以行使两项权利中的一项:禁止一名参议员的权利:参议员可以让另一位参议员在这一轮和随后的几轮中丧失所有的权利。宣布胜利:如果参议员发现有权利投票的参议员都是同一个阵营的,他可以宣布胜利并决定有关变化。给你一个字符串senate代表
- 不使用递归的决策树生成算法
Fuxiao___
算法
不使用递归的决策树生成算法利用队列queue,实现层次遍历(广度优先遍历),逐步处理每个节点来建立子树结构。再构建一个辅助队列,将每个节点存储到nodes_to_process列表中,以便在树生成完成后可以反向遍历计算每个节点的leaf_num(叶子节点数量)。对于每个节点,根据特征选择和树的条件构建子节点;如果达到叶节点条件,直接将其标记为叶节点。最后,逆序处理计算每个结点的叶节点数量:通过逆序
- 【人工智能-初级】第20章 使用 Matplotlib 和 Seaborn 进行数据可视化
若北辰
人工智能信息可视化人工智能matplotlib
【人工智能-初级】系列专栏【人工智能-初级】第1章人工智能概述【人工智能-初级】第2章机器学习入门:从线性回归开始【人工智能-初级】第3章k-最近邻算法(KNN):分类和Python实现【人工智能-初级】第4章用Python实现逻辑回归:从数据到模型【人工智能-初级】第5章支持向量机(SVM):原理解析与代码实现【人工智能-初级】第6章决策树和随机森林:浅显易懂的介绍及Python实践【人工智能-
- (62)使用RLS自适应滤波器进行系统辨识的MATLAB仿真
通信仿真实验室
matlab信号处理通信系统通信算法开发语言自适应滤波器RLS
文章目录前言一、基本概念二、RLS算法原理三、RLS算法的典型应用场景四、MATLAB仿真代码五、仿真结果1.滤波器的输入信号、参考信号、输出信号、误差信号2.对未知系统进行辨识得到的系数总结与后续前言RLS(递归最小二乘)自适应滤波器是一种用于系统辨识和信号处理的算法,其原理基于最小二乘法。系统辨识是指从输入输出数据中估计或建模一个动态系统的过程。在RLS自适应滤波器中,目的是找到滤波器系数,使
- 回溯算法简单理解
tanactor
刷题c++算法c++
leecode每日一题回溯算法是一种通过试错来解决问题的算法,当发现当前路径无法得到正确解时,会回溯到上一步尝试其他可能。它特别适合解决组合问题、排列问题、子集问题、棋盘类问题等。以下是详细解析和C++实现:一、回溯算法核心思想“选择→探索→撤销”的循环过程:路径:已做出的选择选择列表:当前可以做的选择结束条件:到达决策树底层时的终止条件二、算法框架模板voidbacktrack(路径,选择列表)
- 【牛客刷题系列】贪心算法相关面试题总结
Li-eng
数据结构贪心算法
贪心算法相关面试题组队竞赛题目解析:代码组队竞赛链接:组队竞赛来源:牛客网牛牛举办了一次编程比赛,参加比赛的有3*n个选手,每个选手都有一个水平值a_i.现在要将这些选手进行组队,一共组成n个队伍,即每个队伍3人.牛牛发现队伍的水平值等于该队伍队员中第二高水平值。例如:一个队伍三个队员的水平值分别是3,3,3.那么队伍的水平值是3一个队伍三个队员的水平值分别是3,2,3.那么队伍的水平值是3一个队
- 贪心算法练习题:部分背包问题
jackson61
贪心算法算法
/*-----------------------------------------------------有n个物体,第i个物体的重量是wi,价值为vi,选若干个物体,使得在总重量不超过c的情况下让总价值尽量高。这里每个物体都可以只取走一部分,价值和重量按比例计算。输入:第一行输入两个整数表示n和c。第2到第n+1行每行两个整数分别表示wi和vi。输出:第一行输出所选物品的总价值v和总重量w以
- 贪心算法之证明要点----算法导论
G11176593
算法贪心算法
目标:只需证明存在一个最优解是以贪心选择得到的,就ok了。一般先假设一个最优解,用剪切黏贴技术(参考算法导论)两个性质:贪心选择性质:一个全局最优解可以通过局部最优得到。即存在一个最优解是以贪心选择开始的。最优子结构:一个最优解包括期子问题的最优解。即一个n的最优解分解成第一步的贪心选择,和n-1的子问题,这个n-1的子问题也是最优的。最后要说明,第一步的贪心选择和n-1的子问题可以合并成一个全局
- 机器学习与数据挖掘:决策树(知识点总结)
KE.WINE
机器学习机器学习数据挖掘决策树
决策树叶节点对应于决策结果,内部节点表示一个特征或属性。基本流程决策树算法递归返回的三个条件:当前结点包含的样本全属于同一类别,无需划分;当前属性集为空,或是所有样本在所有属性上取值相同,无法划分;*将当前节点标记为叶节点,将其类别设定为该节点所含样本最多的类别;当前结点包含的样本集合为空,不能划分;*将当前节点标记为叶节点,将其类别设定其父节点所含样本最多的类别;划分选择决策树学习算法包括3部分
- leetcode刷题/贪心算法 45. 跳跃游戏 II
公仔面i
leetcode刷题/贪心算法leetcode数据结构算法c++贪心算法
45.跳跃游戏II题意:给你一个非负整数数组nums,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。你的目标是使用最少的跳跃次数到达数组的最后一个位置。假设你总是可以到达数组的最后一个位置。示例1:输入:nums=[2,3,1,1,4]输出:2解释:跳到最后一个位置的最小跳跃数是2。从下标为0跳到下标为1的位置,跳1步,然后跳3步到达数组的最后一个位置。示例2:输入
- 【Leetcode刷题记录】45. 跳跃游戏 II--贪心算法
钓一朵雪
算法算题笔记leetcode贪心算法
45.跳跃游戏II给定一个长度为n的0索引整数数组nums。初始位置为nums[0]。每个元素nums[i]表示从索引i向后跳转的最大长度。换句话说,如果你在nums[i]处,你可以跳转到任意nums[i+j]处:0&nums){inttime=0;intn=nums.size(),i=0;while(i=n-1){time++;break;}intmax=0,maxIndex=0;for(int
- Python 实现基于QRF随机森林分位数回归多变量时间序列区间预测模型
nantangyuxi
Pythonpython随机森林回归人工智能支持向量机神经网络开发语言
目录Python实现基于QTF随机森林分位数回归多变量时间序列区间预测模型...1项目背景介绍...1项目目标与意义...2项目挑战...2python复制代码#安装必要的库!prtiprtinttallnrmpypandatmatplotlrtibtcrtikrtit-leatn#导入所需模块rtimpottnrmpyatnprtimpottpandatatpdftomtkleatn.model
- Python中的决策树算法探索基本原理
myCOTB
Python算法python决策树
Python中的决策树算法探索决策树是一种简单而直观的机器学习算法,广泛应用于分类和回归任务中。它通过对数据进行分割,构建一个树形结构,从而做出决策。本文将探讨决策树的基本原理,并演示如何使用Python中的scikit-learn库实现决策树算法。决策树的基本原理决策树的基本思想是通过对数据进行分割,逐步缩小数据的范围,从而使得每个叶节点(终节点)中的样本属于同一类别或具有相似的特征。决策树的构
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的