系统中使用的ES环境不一定每篇文章都有,但是可以在合集中找到,关注《醉鱼Java》一起进步
version: '3.8'
services:
cerebro:
image: lmenezes/cerebro:0.8.3
container_name: cerebro
ports:
- "9000:9000"
command:
- -Dhosts.0.host=http://eshot:9200
networks:
- elastic
kibana:
image: docker.elastic.co/kibana/kibana:8.1.3
container_name: kibana
environment:
- I18N_LOCALE=zh-CN
- XPACK_GRAPH_ENABLED=true
- TIMELION_ENABLED=true
- XPACK_MONITORING_COLLECTION_ENABLED="true"
- ELASTICSEARCH_HOSTS=http://eshot:9200
- server.publicBaseUrl=http://192.168.160.234:5601
ports:
- "5601:5601"
networks:
- elastic
eshot:
image: elasticsearch:8.1.3
container_name: eshot
environment:
- node.name=eshot
- cluster.name=es-docker-cluster
- discovery.seed_hosts=eshot,eswarm,escold
- cluster.initial_master_nodes=eshot,eswarm,escold
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
- xpack.security.enabled=false
- node.attr.node_type=hot
ulimits:
memlock:
soft: -1
hard: -1
volumes:
- D:\zuiyuftp\docker\es8.1\eshot\data:/usr/share/elasticsearch/data
- D:\zuiyuftp\docker\es8.1\eshot\logs:/usr/share/elasticsearch/logs
- D:\zuiyuftp\docker\es8.1\eshot\plugins:/usr/share/elasticsearch/plugins
ports:
- 9200:9200
networks:
- elastic
eswarm:
image: elasticsearch:8.1.3
container_name: eswarm
environment:
- node.name=eswarm
- cluster.name=es-docker-cluster
- discovery.seed_hosts=eshot,eswarm,escold
- cluster.initial_master_nodes=eshot,eswarm,escold
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
- xpack.security.enabled=false
- node.attr.node_type=warm
ulimits:
memlock:
soft: -1
hard: -1
volumes:
- D:\zuiyuftp\docker\es8.1\eswarm\data:/usr/share/elasticsearch/data
- D:\zuiyuftp\docker\es8.1\eswarm\logs:/usr/share/elasticsearch/logs
- D:\zuiyuftp\docker\es8.1\eshot\plugins:/usr/share/elasticsearch/plugins
networks:
- elastic
escold:
image: elasticsearch:8.1.3
container_name: escold
environment:
- node.name=escold
- cluster.name=es-docker-cluster
- discovery.seed_hosts=eshot,eswarm,escold
- cluster.initial_master_nodes=eshot,eswarm,escold
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
- xpack.security.enabled=false
- node.attr.node_type=cold
ulimits:
memlock:
soft: -1
hard: -1
volumes:
- D:\zuiyuftp\docker\es8.1\escold\data:/usr/share/elasticsearch/data
- D:\zuiyuftp\docker\es8.1\escold\logs:/usr/share/elasticsearch/logs
- D:\zuiyuftp\docker\es8.1\eshot\plugins:/usr/share/elasticsearch/plugins
networks:
- elastic
# volumes:
# eshotdata:
# driver: local
# eswarmdata:
# driver: local
# escolddata:
# driver: local
networks:
elastic:
driver: bridge
在Elasticsearch中,聚合是一种功能强大的数据处理技术,它允许我们对索引中的数据进行多种计算和分析操作。聚合可以理解为对数据集进行分组,并在每个分组上执行各种指标计算,类似于SQL中的GROUP BY和聚合函数。
为了验证聚合功能,我们将使用一个示例数据集,假设我们有一个存储了商品信息的索引,包含以下字段:
product_name
:商品名称 category
:商品分类 price
:商品价格 quantity
:商品数量 manufacturer
:制造商 timestamp
:记录时间戳 下面我们导入测试数据
创建索引
PUT /zfc-doc-000001
{
"settings": {
"index":{
"number_of_shards":3,
"number_of_replicas":2
}
},
"mappings": {
"properties": {
"product_name":{
"type":"keyword"
},
"category":{
"type":"keyword"
},
"price":{
"type": "integer"
},
"quantity":{
"type": "integer"
},
"manufacturer":{
"type": "keyword"
},
"timestamp":{
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
}
}
}
}
添加数据
PUT _bulk
{"index":{"_index":"zfc-doc-000002","_id":"1"}}
{"product_name": "iPhone 12","category": "Electronics","price": 999,"quantity": 50,"manufacturer": "Apple","timestamp": "2023-07-24 10:00:00"}
{"index":{"_index":"zfc-doc-000002","_id":"2"}}
{"product_name": "Samsung Galaxy S21","category": "Electronics","price": 799,"quantity": 30,"manufacturer": "Samsung","timestamp": "2023-07-24 11:30:00"}
{"index":{"_index":"zfc-doc-000002","_id":"3"}}
{"product_name": "Sony Bravia 65-inch TV","category": "Electronics","price": 1499,"quantity": 20,"manufacturer": "Sony","timestamp": "2023-07-24 13:15:00"}
{"index":{"_index":"zfc-doc-000002","_id":"4"}}
{"product_name": "HP Spectre x360","category": "Electronics","price": 1299,"quantity": 25,"manufacturer": "HP","timestamp": "2023-07-24 15:45:00"}
{"index":{"_index":"zfc-doc-000002","_id":"5"}}
{"product_name": "Dell XPS 15", "category": "Electronics","price": 1399,"quantity": 15,"manufacturer": "Dell","timestamp": "2023-07-24 17:20:00"}
{"index":{"_index":"zfc-doc-000002","_id":"6"}}
{"product_name": "Nike Air Zoom Pegasus 38", "category": "Sports","price": 119,"quantity": 100,"manufacturer": "Nike","timestamp": "2023-07-24 09:30:00"}
{"index":{"_index":"zfc-doc-000002","_id":"7"}}
{"product_name": "Adidas Ultraboost 21","category": "Sports","price": 129,"quantity": 80,"manufacturer": "Adidas","timestamp": "2023-07-24 10:45:00"}
{"index":{"_index":"zfc-doc-000002","_id":"8"}}
{"product_name": "Canon EOS Rebel T7i","category": "Electronics","price": 699,"quantity": 10,"manufacturer": "Canon","timestamp": "2023-07-24 14:05:00"}
{"index":{"_index":"zfc-doc-000002","_id":"9"}}
{"product_name": "LG 55-inch 4K TV", "category": "Electronics","price": 899,"quantity": 30,"manufacturer": "LG","timestamp": "2023-07-24 16:30:00"}
{"index":{"_index":"zfc-doc-000002","_id":"10"}}
{"product_name": "Lenovo ThinkPad X1 Carbon", "category": "Electronics","price": 1599,"quantity": 18,"manufacturer": "Lenovo","timestamp": "2023-07-24 18:10:00"}
词条聚合是一种用于对文本字段进行分组的聚合方式,它会将相同值的文档分到同一个桶(Bucket)中,并计算每个桶中文档的数量。
示例查询:
GET zfc-doc-000002/_search
{
"size": 0,
"aggs": {
"category_count": {
"terms": {
"field": "category",
"size": 10
}
}
}
}
解释:
"size": 0
:表示只返回聚合结果,不返回实际文档数据。
"aggs"
:定义聚合操作。
"category_count"
:自定义的聚合名称,用于标识结果。
"terms"
:指定使用词条聚合。
"field": "category"
:指定要进行聚合的字段。
嵌套聚合允许在一个桶内进行更深层次的聚合操作。例如,我们可以先按分类分组,然后在每个分类内再按制造商进行分组,并计算每个分类下的平均价格。
示例查询:
GET zfc-doc-000002/_search
{
"size": 0,
"aggs": {
"category_group": {
"terms": {
"field": "category",
"size": 10
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
解释:
"aggs"
:定义聚合操作。 "category_group"
:自定义的聚合名称,用于标识结果。 "terms"
:指定使用词条聚合。 "field": "category"
:指定要进行聚合的字段。 "avg_price"
:自定义的聚合名称,用于标识结果。 "avg"
:指定使用平均值聚合。 "field": "price"
:指定要进行聚合的数值字段。 假设我们希望根据商品价格(price
字段)创建一个价格区间的直方图,将商品按照价格范围进行分组,并统计每个价格区间内的商品数量。
示例查询:
GET zfc-doc-000002/_search
{
"size": 0,
"aggs": {
"price_histogram": {
"histogram": {
"field": "price",
"interval": 200
}
}
}
}
解释:
"aggs"
:定义聚合操作。 "price_histogram"
:自定义的聚合名称,用于标识结果。 "histogram"
:指定使用直方图聚合。 "field": "price"
:指定要进行聚合的数值字段,即商品价格。 "interval": 200
:指定直方图的间隔大小,这里设置为200表示将价格范围划分为200的区间,例如:0-200、200-400、400-600等。 范围聚合允许我们根据指定的范围条件将文档分组,例如:按价格范围进行分组并统计每个价格范围内的商品数量。
示例查询:
GET zfc-doc-000002/_search
{
"size": 0,
"aggs": {
"price_ranges": {
"range": {
"field": "price",
"ranges": [
{ "from": 0, "to": 200 },
{ "from": 200, "to": 500 },
{ "from": 500, "to": 1000 },
{ "from": 1000 }
]
}
}
}
}
解释:
"aggs"
:定义聚合操作。 "price_ranges"
:自定义的聚合名称,用于标识结果。 "range"
:指定使用范围聚合。 "field": "price"
:指定要进行聚合的数值字段,即商品价格。 "ranges"
:指定价格范围的条件数组。
{ "from": 0, "to": 200 }
:表示价格从0到200之间的商品。 { "from": 200, "to": 500 }
:表示价格从200到500之间的商品。 { "from": 500, "to": 1000 }
:表示价格从500到1000之间的商品。 { "from": 1000 }
:表示价格大于等于1000的商品。 统计聚合可以对数值字段进行计算,包括最小值、最大值、平均值、总和和文档数量。
示例查询:
GET zfc-doc-000002/_search
{
"size": 0,
"aggs": {
"price_stats": {
"stats": {
"field": "price"
}
}
}
}
解释:
"aggs"
:定义聚合操作。 "price_stats"
:自定义的聚合名称,用于标识结果。 "stats"
:指定使用统计聚合。 "field": "price"
:指定要进行聚合的数值字段。 我们上面在统计聚合中可以获取很多值,那么我们也可以细化单独获取某一个的聚合结果。
GET zfc-doc-000002/_search
{
"size": 0,
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
GET zfc-doc-000002/_search
{
"size": 0,
"aggs": {
"total_price": {
"sum": {
"field": "price"
}
}
}
}
GET zfc-doc-000002/_search
{
"size": 0,
"aggs": {
"min_price": {
"min": {
"field": "price"
}
}
}
}
GET zfc-doc-000002/_search
{
"size": 0,
"aggs": {
"max_price": {
"max": {
"field": "price"
}
}
}
}
GET zfc-doc-000002/_search
{
"size": 0,
"aggs": {
"price_stats_extended": {
"extended_stats": {
"field": "price"
}
}
}
}
GET zfc-doc-000002/_search
{
"size": 0,
"aggs": {
"price_percentiles": {
"percentiles": {
"field": "price",
"percents": [25, 50, 75, 90]
}
}
}
}
假设有一个名为timestamp
的日期字段,我们可以进行日期直方图聚合,按照日期进行分组并统计每个时间段内的文档数量。
GET zfc-doc-000002/_search
{
"size": 0,
"aggs": {
"date_histogram_agg": {
"date_histogram": {
"field": "timestamp",
"fixed_interval": "1h"
}
}
}
}
本文由 mdnice 多平台发布