[PyTorch][chapter 46][LSTM -1]

前言:

           长短期记忆网络(LSTM,Long Short-Term Memory)是一种时间循环神经网络,是为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的。

目录:

  1.      背景简介
  2.      LSTM Cell
  3.      LSTM 反向传播算法
  4.      为什么能解决梯度消失
  5.       LSTM 模型的搭建


一  背景简介:

       1.1  RNN

         RNN 忽略o_t,L_t,y_t 模型可以简化成如下

      [PyTorch][chapter 46][LSTM -1]_第1张图片

       

          图中Rnn Cell 可以很清晰看出在隐藏状态h_t=f(x_t,h_{t-1})

            得到 h_t后:

              一方面用于当前层的模型损失计算,另一方面用于计算下一层的h_{t+1}

    由于RNN梯度消失的问题,后来通过LSTM 解决 

       1.2 LSTM 结构

        [PyTorch][chapter 46][LSTM -1]_第2张图片


二  LSTM  Cell

   LSTMCell(RNNCell) 结构

          [PyTorch][chapter 46][LSTM -1]_第3张图片

          前向传播算法 Forward

         2.1   更新: forget gate 忘记门

             f_t=\sigma(W_fh_{t-1}+U_{t}x_t+b_f)

             将值朝0 减少, 激活函数一般用sigmoid

             输出值[0,1]

         2.2 更新: Input gate 输入门

                i_t=\sigma(W_ih_{t-1}+U_ix_t+b_i)

                决定是不是忽略输入值

    

           2.3 更新: 候选记忆单元

                    a_t=\widetilde{c_t}=tanh(W_a h_{t-1}+U_ax_t+b_a)

           2.4 更新: 记忆单元

               c_t=f_t \odot c_{t-1}+i_t \odot a_t

             2.5  更新: 输出门

                决定是否使用隐藏值

                 o_t=\sigma(W_oh_{t-1}+U_ox_t+b_0)  

           2.6. 隐藏状态

                h_t=o_t \odot tanh(c_t)

           2.7  模型输出

                  \hat{y_t}=\sigma(Vh_t+b)

LSTM 门设计的解释一:

 输入门 ,遗忘门,输出门 不同取值组合的时候,记忆单元的输出情况

[PyTorch][chapter 46][LSTM -1]_第4张图片


三  LSTM 反向传播推导

      3.1 定义两个\delta_t

             \delta_h^t=\frac{\partial L}{\partial h_t}

            \delta_c^t=\frac{\partial L}{\partial C_t}

    3.2  定义损失函数

            损失函数L(t)分为两部分: 

             时刻t的损失函数 l(t)

             时刻t后的损失函数L(t+1)

              L(t)=\left\{\begin{matrix} l(t)+L(t+1), if: t<T\\ l(t), if: t=T \end{matrix}\right.

      3.3 最后一个时刻\tau

              [PyTorch][chapter 46][LSTM -1]_第5张图片

 这里面要注意这里的o^{\tau}= Vh_{\tau}+c

    证明一下第二项,主要应用到微分的两个性质,以及微分和迹的关系:

   [PyTorch][chapter 46][LSTM -1]_第6张图片

   dl= tr((\frac{\partial L^{\tau}}{\partial h^{\tau}})^Tdh^{\tau})  ... 公式1: 微分和迹的关系

       =tr((\delta_h^{\tau})^Tdh^{\tau})

     因为

    h^{\tau}=o^{\tau} \odot tanh(c^{\tau})

   dh_T=o^{\tau}\odot(d(tanh (c^{\tau})))

           =o^{\tau} \odot (1-tanh^2(c^{\tau})) \odot dc^{\tau}

     带入上面公式1:

      dl= tr((\delta_h^{\tau})^T (o^{\tau}\odot(1-tanh^2(c^{\tau}))\odot dc^{\tau})

           =tr((\delta_h^{\tau} \odot o^{\tau} \odot(1-tanh^2(c^{\tau}))^Tdc^{\tau})

    所以

3.4   链式求导过程

       求导结果:

 [PyTorch][chapter 46][LSTM -1]_第7张图片

  这里详解一下推导过程:

  这是一个符合函数求导:先把h 写成向量形成

h=\begin{bmatrix} o_1*tanh(c_1)\\ o_2*tanh(c_2) \\ .... \\ o_n*tanh(c_n) \end{bmatrix}

 ------------------------------------------------------------   

 第一项: 

             

         h_{t+1}=o_{t+1}\odot tanh(c_{t+1})

         o_{t+1}=\sigma(W_oh_t+U_ox_{t+1}+b_0)

        设 a_{t+1}=W_oh_t+U_ox_{t+1}+b_0

           则    \frac{\partial h_{t+1}}{\partial h_{t}}=\frac{\partial h_{t+1}}{\partial o_{t+1}}\frac{\partial o_{t+1}}{\partial a_{t+1}}\frac{\partial a_{t+1}}{\partial h_{t}}

 

            其中:(利用矩阵求导的定义法 分子布局原理)

                    \frac{\partial h_{t+1}}{\partial o_{t+1}}=diag(tanh(c^{t+1})) 是一个对角矩阵

                  o=\begin{bmatrix} \sigma(a_1)\\ \sigma(a_2) \\ .... \\ \sigma(a_n) \end{bmatrix}

                 \frac{\partial o_{t+1}}{\partial a_{t+1}}=diag(o_{t+1}\odot(1-o_{t+1}))

                 \frac{\partial a_{t+1}}{\partial h_{t}}=W_o

                 几个连乘起来就是第一项

               

第二项

    c_{t+1}=f_{t+1}\odot c_t+i_{t+1}\odot a_{t+1}

   f_{t+1}=\sigma(W_fh_t+U_tx_{t+1}+b_f)

   i_{t+1}=\sigma(W_ih_t+U_i x_{t+1}+b_i)

  a_{t+1}=tanh(W_a h_t +U_ax_t +b_a)

参考:

   h=\begin{bmatrix} o_1*tanh(c_1)\\ o_2*tanh(c_2) \\ .... \\ o_n*tanh(c_n) \end{bmatrix}

其中:

\frac{\partial h_{t+1}}{\partial c^{t+1}}=diag(o^{t+1}\odot (1-tanh^2(c^{t+1}))

\frac{\partial h_{t+1}}{\partial h_{t}}=\frac{\partial h_{t+1}}{\partial c_{t+1}}\frac{\partial c_{t+1}}{\partial f_{t+1}}\frac{\partial f_{t+1}}{\partial h_{t}}

 \frac{\partial c_{t+1}}{\partial f_{t+1}}=diag(c^{t})

 \frac{\partial a_{t+1}}{\partial h_{t}}=diag(f_t \odot(1-f_t))W_f

其它也是相似,就有了上面的求导结果

[PyTorch][chapter 46][LSTM -1]_第8张图片


四  为什么能解决梯度消失

    [PyTorch][chapter 46][LSTM -1]_第9张图片

     4.1 RNN 梯度消失的原理

                ,复旦大学邱锡鹏书里面 有更加详细的解释,通过极大假设:

在梯度计算中存在梯度的k 次方连乘 ,导致 梯度消失原理。

    4.2  LSTM 解决梯度消失 解释1:

            通过上面公式发现梯度计算中是加法运算,不存在连乘计算,

            极大概率降低了梯度消失的现象。

    4.3  LSTM 解决梯度 消失解释2:

              记忆单元c  作用相当于ResNet的残差部分.  

   比如f_{t}=1,\hat{c_t}=0 时候,\frac{\partial c_t}{\partial c_{t-1}}=1,不会存在梯度消失。

       


五 模型的搭建

[PyTorch][chapter 46][LSTM -1]_第10张图片

   [PyTorch][chapter 46][LSTM -1]_第11张图片

    我们最后发现:

    O_t,C_t,H_t 的维度必须一致,都是hidden_size

    通过C_t,则 I_t,F_t,\tilde{c} 最后一个维度也必须是hidden_size

    

# -*- coding: utf-8 -*-
"""
Created on Thu Aug  3 15:11:19 2023

@author: chengxf2
"""

# -*- coding: utf-8 -*-
"""
Created on Wed Aug  2 15:34:25 2023

@author: chengxf2
"""

import torch
from torch import nn
from d21 import torch as d21


def normal(shape,devices):
    
    data = torch.randn(size= shape, device=devices)*0.01
    
    return data


def get_lstm_params(input_size, hidden_size,categorize_size,devices):
    


    
    #隐藏门参数
    W_xf= normal((input_size, hidden_size), devices)
    W_hf = normal((hidden_size, hidden_size),devices)
    b_f = torch.zeros(hidden_size,devices)
    
    #输入门参数
    W_xi= normal((input_size, hidden_size), devices)
    W_hi = normal((hidden_size, hidden_size),devices)
    b_i = torch.zeros(hidden_size,devices)
    

    
    #输出门参数
    W_xo= normal((input_size, hidden_size), devices)
    W_ho = normal((hidden_size, hidden_size),devices)
    b_o = torch.zeros(hidden_size,devices)
    
    #临时记忆单元
    W_xc= normal((input_size, hidden_size), devices)
    W_hc = normal((hidden_size, hidden_size),devices)
    b_c = torch.zeros(hidden_size,devices)
    
    #最终分类结果参数
    W_hq = normal((hidden_size, categorize_size), devices)
    b_q = torch.zeros(categorize_size,devices)
    
    
    params =[
        W_xf,W_hf,b_f,
        W_xi,W_hi,b_i,
        W_xo,W_ho,b_o,
        W_xc,W_hc,b_c,
        W_hq,b_q]
    
    for param in params:
        
        param.requires_grad_(True)
        
    return params

def init_lstm_state(batch_size, hidden_size, devices):
    
    cell_init = torch.zeros((batch_size, hidden_size),device=devices)
    hidden_init = torch.zeros((batch_size, hidden_size),device=devices)
    
    return (cell_init, hidden_init)


def lstm(inputs, state, params):
    [
        W_xf,W_hf,b_f,
        W_xi,W_hi,b_i,
        W_xo,W_ho,b_o,
        W_xc,W_hc,b_c,
        W_hq,b_q] = params    
    
    (H,C) = state
    outputs= []
    
    for x in inputs:
        
        #input gate
        I = torch.sigmoid((x@W_xi)+(H@W_hi)+b_i)
        F = torch.sigmoid((x@W_xf)+(H@W_hf)+b_f)
        O = torch.sigmoid((x@W_xo)+(H@W_ho)+b_o)
        
        C_tmp = torch.tanh((x@W_xc)+(H@W_hc)+b_c)
        C = F*C+I*C_tmp
        
        H = O*torch.tanh(C)
        Y = (H@W_hq)+b_q
        
        outputs.append(Y)
        
    return torch.cat(outputs, dim=0),(H,C)
        
    

def main():
    batch_size,num_steps =32, 35
    train_iter, cocab= d21.load_data_time_machine(batch_size, num_steps)

    

if __name__ == "__main__":
    
     main()


 参考

 

CSDN

https://www.cnblogs.com/pinard/p/6519110.html

57 长短期记忆网络(LSTM)【动手学深度学习v2】_哔哩哔哩_bilibili

你可能感兴趣的:(lstm,人工智能,rnn)