像数据科学家一样思考:12步指南(中)

7-工程产品

下一步是建立统计软件。如果统计是分析和从数据中得出结论的框架,那么软件就是将这个框架付诸行动的工具。数据科学家必须为任何项目做出许多软件选择。如果你有一个喜欢的软件,这通常是一个不错的选择,但是有充分的理由去挑选别的东西。如果你是数据科学或统计软件的新手,或许很难找到一个起点。

对大数据以及人工智能概念都是模糊不清的,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习qq群:458345782,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系 。从java和linux入手,其后逐步的深入到HADOOP-hive-oozie-web-flume-python-hbase-kafka-scala-SPARK等相关知识一一分享!

电子表格和基于GUI的应用程序通常是执行任何类型数据分析的首选。特别是如果数据是表格形式的,例如CSV,并且数据不是太多,那么在电子表格中开始分析就很容易了。此外,如果你需要进行的计算并不复杂,那么电子表格甚至可以涵盖项目的所有软件需求。这里常用的软件工具包括Excel、SPSS、Stata、SAS和Minitab。学习这些中级工具之一的编程语言可能是学习真正的编程语言的一个很好的一步,这些语言本身就非常有用。特别是SAS在统计行业中拥有广泛的追随者,学习它的语言本身就是一个合理的目标。

MATLAB是一种专有的软件环境和编程语言,而且MATLAB的成本相当高。有些人决定在一个名为Octave的开源项目中复制它。随着Octave的成熟,它在可用功能和功能方面越来越接近MATLAB。除了使用附加软件包(工具箱)的代码之外,用MATLAB编写的绝大多数代码都可以在Octave中工作,反之亦然。

总的来说,MATLAB和Octave非常适合在信号处理、通信、图像处理和优化等方面使用大型矩阵的工程师(特别是电气工程师)。

R语言是基于

你可能感兴趣的:(大数据,大数据,数据科学,大数据学习)