算法04-树、二叉树、二叉搜索树的实现和特性

《算法文章汇总》

单链表有多个next指针就变成树了。

Linked List是特殊化的Tree,Tree是特殊化的Graph。
没有环的图就是树。

树节点

Java
public class TreeNode{
     public int val;
     public TreeNode left,right;
     public TreeNode(int val){
         this.val = val;
         this.left = null;
         this.right = null;
     }
}

C++
struct TreeNode{
   int val;
   TreeNode *left;
   TreeNode *right;
   TreeNode(int x):val(x),left(NULL),right(NULL){}
}

二叉树遍历

1.前序:根-左-右
2.中序:左-根-右
3.后序:左-右-根
遍历基本上基于递归的

def preorder(self,root):
if root:
self traverse_path append(root val)
self preorder(root left)
self preorder(root right)

def inorder(self,root):
if root:
   self inorder(root left)
   self traverse_path append(root val)
   self inorder(root right)
   
   
def postorder(self,root)
if root:
   self postorder(root left)
   self postorder(root right)
   self traverse_path append(root val)

二叉搜索树Binary Search Tree

二叉搜索树,也称二叉排序树、有序二叉树、排序二叉树,是指一棵空树或者具有下列性质的二叉树:

1.左子树上所有节点的值均小于它的根节点的值;
2.右子树上的所有节点的值均大于它的根节点的值;
3.依次类推:左、右子树也分别为二叉查找树。(这就是重复性!)
中序遍历:升序遍历
1.查询 log2(n)
2.插入新节点(创建) log2(n)
3.删除

二叉树的中序遍历

https://leetcode-cn.com/problems/binary-tree-inorder-traversal/
给定一个二叉树,返回它的中序遍历。
输入: [1,null,2,3]
1

2
/
3
输出: [1,3,2]

方法一:递归法

第一种解决方法是使用递归。这是经典的方法,直截了当。我们可以定义一个辅助函数来实现递归。

public class TreeNode {
    int val;
    TreeNode left;
    TreeNode right;
    TreeNode(int x){
        val = x;
    }
}

public class Solution {
    
    @Test
    public void testBinaryTree(){
        TreeNode root = new TreeNode(1);
        TreeNode tree4 = new TreeNode(4);
        TreeNode tree5 = new TreeNode(5);
        TreeNode tree2 = new TreeNode(2);
        TreeNode tree3 = new TreeNode(3);
        TreeNode tree6 = new TreeNode(6);
        root.left = tree2;
        root.right = tree3;
        tree2.left = tree4;
        tree2.right = tree5;
        tree3.left = tree6;

        List res = inorderTraversal(root);
        System.out.printf(res.toString());
    }

    public List inorderTraversal(TreeNode root) {
        ArrayList res = new ArrayList();
        helper(root,res);
        return res;
    }

    public void helper(TreeNode root,ArrayList res){
        if(root != null){
            if(root.left != null){
                helper(root.left,res);
            }
            res.add(root.val);
            if(root.right != null){
                helper(root.right,res);
            }
        }
    }
}
//输出
[4, 2, 5, 1, 6, 3]

复杂度分析

时间复杂度:O(n)。递归函数 T(n) = 2 * T(n/2)+1。
空间复杂度:最坏情况下需要空间O(n)O(n),平均情况为O(\log n)O(logn)。
二叉树.png

方法二:基于栈的遍历

public class Solution {
    @Test
    public void testStack(){
        TreeNode root = new TreeNode(1);
        TreeNode tree4 = new TreeNode(4);
        TreeNode tree5 = new TreeNode(5);
        TreeNode tree2 = new TreeNode(2);
        TreeNode tree3 = new TreeNode(3);
        TreeNode tree6 = new TreeNode(6);
        root.left = tree2;
        root.right = tree3;
        tree2.left = tree4;
        tree2.right = tree5;
        tree3.left = tree6;

        List res = inorderTraversal0(root);
        System.out.printf(res.toString());
    }

    public List inorderTraversal0(TreeNode root){
        List res = new ArrayList();
        Stack stack = new Stack();
        TreeNode curr = root;
        while (curr != null || !stack.isEmpty()){
            while(curr != null){
                stack.push(curr);
                curr = curr.left;
            }
            curr = stack.pop();
            res.add(curr.val);
            curr = curr.right;
        }
        return res;
    }
」
//输出
[4, 2, 5, 1, 6, 3]

复杂度分析

时间复杂度:O(n)O(n)。

空间复杂度:O(n)O(n)。

二叉树的前序遍历

方法一:递归法

class Solution {
    @Test
    public void testpreorderTravelsal(){
        TreeNode root = new TreeNode(1);
        TreeNode tree4 = new TreeNode(4);
        TreeNode tree5 = new TreeNode(5);
        TreeNode tree2 = new TreeNode(2);
        TreeNode tree3 = new TreeNode(3);
        TreeNode tree6 = new TreeNode(6);
        root.left = tree2;
        root.right = tree3;
        tree2.left = tree4;
        tree2.right = tree5;
        tree3.left = tree6;

        List res = preorderTraversal(root);
        System.out.printf(res.toString());
    }
    public List preorderTraversal(TreeNode root) {
        ArrayList res = new ArrayList();
        helper0(root,res);
        return res;
    }

    public void helper0(TreeNode root,ArrayList res){
           if(root != null){
               res.add(root.val);
               if(root.left!=null){
                   helper0(root.left,res);
               }
               if(root.right!=null){
                   helper0(root.right,res);
               }
           }
    }
}
//输出
[1, 2, 4, 5, 3, 6]

方法二:基于栈的遍历

@Test
    public void testPreorderTraversalStack0(){
        TreeNode root = new TreeNode(1);
        TreeNode tree4 = new TreeNode(4);
        TreeNode tree5 = new TreeNode(5);
        TreeNode tree2 = new TreeNode(2);
        TreeNode tree3 = new TreeNode(3);
        TreeNode tree6 = new TreeNode(6);
        root.left = tree2;
        root.right = tree3;
        tree2.left = tree4;
        tree2.right = tree5;
        tree3.left = tree6;

        List res = preorderTraversal0(root);
        System.out.printf(res.toString());
    }

    public List preorderTraversal0(TreeNode root){
        ArrayList res = new ArrayList();
        Stack stack = new Stack();
        TreeNode curr = root;
        while(curr != null || !stack.isEmpty()){
            while(curr!= null){
                res.add(curr.val);
                stack.push(curr);
                curr = curr.left;
            }
            curr = stack.pop();
            curr = curr.right;
        }
        return res;
    }
//输出
[1, 2, 4, 5, 3, 6]
时间复杂度:访问每个节点恰好一次,时间复杂度为 O(N)O(N) ,其中 NN 是节点的个数,也就是树的大小。
空间复杂度:取决于树的结构,最坏情况存储整棵树,因此空间复杂度是 O(N)O(N)。

N叉树的前序遍历

@Test
    public void testPreOrder(){
        Node root = new Node(1);
        Node node2 = new Node(2);
        Node node3 = new Node(3);
        Node node4 = new Node(4);
        Node node5 = new Node(5);
        Node node6 = new Node(6);
        ArrayList list = new ArrayList();
        list.add(node3);
        list.add(node2);
        list.add(node4);
        root.children = list;
        ArrayList list0 = new ArrayList();
        list.add(node5);
        list.add(node6);
        node3.children = list0;
        List list1 = preorder(root);
        System.out.println(list1.toString());
    }

    public List preorder(Node root) {
        ArrayList res = new ArrayList();
        Node curr = root;
        helper(curr,res);
        return res;
    }
    public void helper(Node curr,ArrayList res){
        if(curr != null){
            res.add(curr.val);
            if(curr.children != null && curr.children.size()>0){
                for(Node node:curr.children){
                    helper(node,res);
                }
            }
        }
    }
//输出
[1, 3, 2, 4, 5, 6]

二叉树的后序遍历

方法一:递归法

         //后序遍历postorder traversal
         public List postorderTraversal(TreeNode root) {
             ArrayList res = new ArrayList<>();
             helper0(root,res);
             return res;
         }
         //递归
         void helper0(TreeNode node,ArrayList res){
             if (node!=null){
                 if (node.left!=null){
                     helper0(node.left,res);
                 }
                 if (node.right!=null){
                     helper0(node.right,res);
                 }
                 res.add(node.val);
             }
         }

方法二:栈

         //栈
         public List postorderTraversal0(TreeNode root) {
             ArrayList res = new ArrayList<>();
             Stack stack = new Stack<>();
             TreeNode cur = root;
             while (!stack.isEmpty() || cur!=null){
                 while (cur!=null){
                     stack.push(cur);
                     cur = cur.left;
                 }
                 cur = stack.pop();
                 //分两种情况,如果没有右孩子或右孩子被访问过了
                 if (cur.right == null || (res.size() != 0 && res.get(res.size() - 1).equals(cur.right.val))){
                     res.add(cur.val);
                     cur = null;
                 }else{
                     stack.push(cur);
                     cur = cur.right;
                 }
             }
             return res;
         }

重建二叉树

输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
输出原始二叉树

    //前序遍历
    int[] preorder;
    HashMap map = new HashMap<>();
    public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
        if (pre.length  == 0 || in.length == 0)return null;
        this.preorder = pre;
        for(int i = 0;i in_right_index) return null;
        //根节点在中序遍历中的位置in_root_index
        int in_root_index = map.get(preorder[pre_root_index]);
        //新建节点
        TreeNode node = new TreeNode(preorder[pre_root_index]);
        //寻找node的左节点
        //在前序遍历中的位置就是:根节点的下标+1(右边一个单位)
        //在中序遍历中的位置就是:1.左边界不变,2.右边界就是根节点的左边一个单位
        node.left = helper1(pre_root_index+1,in_left_index,in_root_index-1);
        //寻找node的右节点
        //在前序遍历中的位置就是:根节点的下标+左子树的长度+1
        //在中序遍历中的位置就是:1.左边界根节点的右边一个单位下标+1,2.右边界不变
        node.right = helper1(pre_root_index + in_root_index - in_left_index + 1,in_root_index+1,in_right_index);
        return node;
    }

你可能感兴趣的:(算法04-树、二叉树、二叉搜索树的实现和特性)