也许更好的阅读体验
D e s c r i p t i o n \mathcal{Description} Description
给你一个长度为 n n n的数组 a a a
你会得到 q q q 条指令, 分两种:
对于每个询问输出一行表示答案
答案对 998244353 998244353 998244353取模
n , q ≤ 1 0 5 0 ≤ a i , w < 998244353 n,q\leq 10^5\\ 0\leq a_i,w<998244353 n,q≤1050≤ai,w<998244353
S o l u t i o n \mathcal{Solution} Solution
方差的定义
对一个序列 a 1 , a 2 , … , a n a_1,a_2,\ldots,a_n a1,a2,…,an,设其平均数为 a ‾ = ∑ a i n \overline a=\dfrac{\sum\limits a_i}{n} a=n∑ai,方差 s 2 = ∑ ( a i − a ‾ ) 2 n s^2=\dfrac{\sum\limits \left(a_i-\overline a\right)^2}{n} s2=n∑(ai−a)2
前置知识
( a 1 + a 2 + … + a n ) 2 = a 1 2 + a 2 2 + … + a n 2 + 2 ∑ i ! = j a i a j \left(a_1+a_2+\ldots+a_n\right)^2=a_1^2+a_2^2+\ldots+a_n^2+2\sum\limits_{i!=j} a_ia_j (a1+a2+…+an)2=a12+a22+…+an2+2i!=j∑aiaj
s 2 = ∑ ( a i − a ‾ ) 2 n = ∑ ( a i 2 − 2 a i a ‾ + a ‾ 2 ) n = ∑ a i 2 − 2 n a ‾ 2 + n a ‾ n = ∑ a i 2 − n a ‾ 2 n = ∑ a i 2 − ∑ a i 2 + 2 ∑ i ! = j a i a j n n s^2=\dfrac{\sum\limits \left(a_i-\overline a\right)^2}{n}=\dfrac{\sum \left(a_i^2-2a_i\overline a+\overline a^2\right)}{n}=\dfrac{\sum a_i^2-2n\overline a^2+n\overline a}{n}=\dfrac{\sum a_i^2-n\overline a^2}{n}=\dfrac{\sum a_i^2-\dfrac{\sum a_i^2+2\sum\limits_{i!=j}a_ia_j}{n}}{n} s2=n∑(ai−a)2=n∑(ai2−2aia+a2)=n∑ai2−2na2+na=n∑ai2−na2=n∑ai2−n∑ai2+2i!=j∑aiaj
把式子提出来重写一遍
s 2 = ∑ a i 2 − ∑ a i 2 + 2 ∑ i ! = j a i a j n n s^2=\dfrac{\sum a_i^2-\dfrac{\sum a_i^2+2\sum\limits_{i!=j}a_ia_j}{n}}{n} s2=n∑ai2−n∑ai2+2i!=j∑aiaj
于是可以计算上面的 a i , a i a j a_i,a_ia_j ai,aiaj出现次数(贡献的系数),考虑一个长度为 n n n的区间,其子序列长度可以是 l e n = 1 , 2 , … , n len=1,2,\ldots,n len=1,2,…,n
考虑 a i a_i ai一定被选,剩下 n − 1 n-1 n−1个数中要选 l e n − 1 len-1 len−1个数出来,类似这样考虑即可
显然对于每个区间内的数,其系数是一样的
设 f n f_n fn表示长度为 n n n的区间里的 a i 2 a_i^2 ai2的系数
则有
f n = ∑ i = 1 n ( n − 1 i − 1 ) 1 − 1 i i = ∑ i = 1 n ( n − 1 i − 1 ) i − 1 i 2 = ∑ i = 1 n ( n − 1 ) ! ( i − 1 ) ( n − i ) ! ( i − 1 ) ! i 2 = ( n − 1 ) ! ∑ i = 1 n 1 ( n − i ) ! ( i − 2 ) ! i 2 = ( n − 1 ) ! ∑ i + j = n n 1 ( i − 2 ) ! i 2 1 j ! \begin{aligned}f_n&=\sum\limits_{i=1}^n\begin{pmatrix}n-1\\i-1\end{pmatrix}\dfrac{1-\dfrac{1}{i}}{i}\\ &=\sum\limits_{i=1}^n\begin{pmatrix}n-1\\i-1\end{pmatrix}\dfrac{i-1}{i^2}\\&= \sum\limits_{i=1}^n\dfrac{\left(n-1\right)!\ \left(i-1\right)}{\left(n-i\right)!\left(i-1\right)!\ i^2}\\&=\left(n-1\right)!\sum\limits_{i=1}^n\dfrac{1}{\left(n-i\right)!\left(i-2\right)!i^2}\\&=\left(n-1\right)!\sum\limits_{i+j=n}^n\dfrac{1}{\left(i-2\right)!i^2}\dfrac{1}{j!}\end{aligned} fn=i=1∑n(n−1i−1)i1−i1=i=1∑n(n−1i−1)i2i−1=i=1∑n(n−i)!(i−1)! i2(n−1)! (i−1)=(n−1)!i=1∑n(n−i)!(i−2)!i21=(n−1)!i+j=n∑n(i−2)!i21j!1
注意最后 i ≥ 2 i\geq 2 i≥2
可以发现这是一个卷积的形式,可以 n l o g n nlogn nlogn算出来
设 g n g_n gn表示长度为 n n n的区间里的 2 a i a j 2a_ia_j 2aiaj的系数
则有
g n = ∑ i = 2 n ( n − 2 i − 2 ) − 1 i 2 g_n=\sum\limits_{i=2}^n\begin{pmatrix}n-2\\i-2\end{pmatrix}\dfrac{-1}{i^2} gn=i=2∑n(n−2i−2)i2−1
同理可推得
g n = − ( n − 2 ) ! ∑ i + j = n n 1 ( i − 2 ) ! i 2 1 j ! g_n=-\left(n-2\right)!\sum\limits_{i+j=n}^n\dfrac{1}{\left(i-2\right)!i^2}\dfrac{1}{j!} gn=−(n−2)!i+j=n∑n(i−2)!i21j!1
注意 i ≥ 2 i\geq 2 i≥2
f n , g n f_n,g_n fn,gn只有前面的系数不同,把后面弄出来即可
另外,对于一个区间,用线段树维护维护一下 ∑ a i \sum a_i ∑ai和 ∑ a i 2 \sum a_i^2 ∑ai2
C o d e \mathcal{Code} Code
/*******************************
Author:Morning_Glory
LANG:C++
Created Time:2019年10月03日 星期四 09时36分57秒
*******************************/
#include
#include
using namespace std;
const int maxn = 1000006;
const int maxt = 1000006;
const int mod = 998244353;
const int gn = 3;
//{{{cin
struct IO{
template<typename T>
IO & operator>>(T&res){
res=0;
bool flag=false;
char ch;
while((ch=getchar())>'9'||ch<'0') flag|=ch=='-';
while(ch>='0'&&ch<='9') res=(res<<1)+(res<<3)+(ch^'0'),ch=getchar();
if (flag) res=~res+1;
return *this;
}
}cin;
//}}}
inline int add (int &x,int y){ return x=((x+y)%mod+mod)%mod;}
inline int mul (int x,int y){ return 1ll*x*y%mod;}
int n,q,id,ans;
int a[maxn],rev[maxn],inv[maxn],fac[maxn],ifac[maxn];
int f[maxn],g[maxn];
//{{{SegmentTree
struct SegmentTree{
//0 -> x^2
//1 -> x
//{{{defination
#define cl (k<<1)
#define cr (k<<1|1)
#define lm (lt[k]+rt[k])/2
#define rm (lt[k]+rt[k])/2+1
#define val0(x) val[x][0]
#define val1(x) val[x][1]
#define lazy0(x) lazy[x][0]
#define lazy1(x) lazy[x][1]
#define len(x) (rt[x]-lt[x]+1)
int lt[maxt],rt[maxt],val[maxt][2],lazy[maxt][2];
//}}}
//{{{build
void build (int l,int r,int k=1)
{
lt[k]=l,rt[k]=r;
if (l==r) return val0(k)=mul(a[l],a[l]),val1(k)=a[l],void();
build(l,lm,cl);
build(rm,r,cr);
val0(k)=(val0(cl)+val0(cr))%mod;
val1(k)=(val1(cl)+val1(cr))%mod;
}
//}}}
//{{{pushdowna
void pushdowna (const int &k)
{
add(lazy1(cl),lazy1(k));
add(lazy1(cr),lazy1(k));
add(val1(cl),mul(len(cl),lazy1(k)));
add(val1(cr),mul(len(cr),lazy1(k)));
lazy1(k)=0;
}
//}}}
//{{{pushdowns
void pushdowns (const int &k)
{
add(lazy0(cl),lazy0(k));
add(lazy0(cr),lazy0(k));
add(val0(cl),mul(len(cl),mul(lazy0(k),lazy0(k))));
add(val0(cr),mul(len(cr),mul(lazy0(k),lazy0(k))));
add(val0(cl),mul(mul(lazy0(k),2),val1(cl)));
add(val0(cr),mul(mul(lazy0(k),2),val1(cr)));
lazy0(k)=0;
}
//}}}
//{{{modifys
void modifys (const int l,const int r,const int v,const int &k=1)
{
if (lt[k]>=l&&rt[k]<=r){
add(val0(k),mul(len(k),mul(v,v)));
add(val0(k),mul(mul(v,2),val1(k)));
add(lazy0(k),v);
return;
}
if (lazy0(k)) pushdowns(k);
if (lazy1(k)) pushdowna(k);
if (lm>=l) modifys(l,r,v,cl);
if (rm<=r) modifys(l,r,v,cr);
val0(k)=(val0(cl)+val0(cr))%mod;
val1(k)=(val1(cl)+val1(cr))%mod;
}
//}}}
//{{{modifya
void modifya (const int &l,const int &r,const int &v,const int &k=1)
{
if (lt[k]>=l&&rt[k]<=r){
add(val1(k),mul(len(k),v));
add(lazy1(k),v);
return;
}
if (lazy0(k)) pushdowns(k);
if (lazy1(k)) pushdowna(k);
if (lm>=l) modifya(l,r,v,cl);
if (rm<=r) modifya(l,r,v,cr);
val0(k)=(val0(cl)+val0(cr))%mod;
val1(k)=(val1(cl)+val1(cr))%mod;
}
//}}}
//{{{query
int query (const int l,const int r,const bool opt,const int &k=1)
{
if (lt[k]>=l&&rt[k]<=r) return val[k][opt];
if (lazy0(k)) pushdowns(k);
if (lazy1(k)) pushdowna(k);
int res=0;
if (lm>=l) add(res,query(l,r,opt,cl));
if (rm<=r) add(res,query(l,r,opt,cr));
return res;
}
//}}}
}ST;
//}}}
//{{{ksm
int ksm (int a,int b)
{
int s=1;
for (;b;b>>=1,a=1ll*a*a%mod)
if (b&1) s=1ll*s*a%mod;
return s;
}
//}}}
//{{{get_rev
int get_rev (int len)//the maximum power of x is len!!!! not the length
{
int lim=1,bit=0;
while (lim<=len) lim<<=1,++bit;
for (int i=0;i<lim;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
return lim;
}
//}}}
//{{{NTT
void NTT (int *a,int len,int type)
{
for (int i=0;i<=len-1;++i)
if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=1;i<len;i<<=1){
int wn=ksm(gn,(mod-1)/(i*2));
if (type==-1) wn=ksm(wn,mod-2);
for (int j=0;j<len;j+=(i<<1)){
int w=1;
for (int k=0;k<i;++k){
int u=a[j+k],t=1ll*w*a[j+k+i]%mod;
a[j+k]=1ll*(u+t)%mod;
a[j+k+i]=1ll*(u-t+mod)%mod;
w=1ll*w*wn%mod;
}
}
}
if (type==-1){
int inv=ksm(len,mod-2);
for (int i=0;i<=len-1;++i) a[i]=1ll*a[i]*inv%mod;
}
}
//}}}
//{{{init
void init ()
{
fac[0]=ifac[0]=inv[1]=1;
for (int i=2;i<=n+2;++i) inv[i]=(-1ll*mod/i*inv[mod%i]%mod+mod)%mod;
for (int i=1;i<=n+2;++i){
fac[i]=mul(fac[i-1],i);
ifac[i]=mul(ifac[i-1],inv[i]);
}
for (int i=0;i<=n;++i){
f[i]=ifac[i];
g[i]=i<=1?0:mul(mul(inv[i],inv[i]),ifac[i-2]);
}
int len=get_rev(n<<1);
NTT(f,len,1),NTT(g,len,1);
for (int i=0;i<len;++i) f[i]=mul(f[i],g[i]);
NTT(f,len,-1);
for (int i=0;i<=n;++i){
g[i]=0;
if (i>1) add(g[i],-mul(fac[i-2],f[i])),f[i]=mul(fac[i-1],f[i]);
}
}
//}}}
int main ()
{
cin>>n>>q>>id;
for (int i=1;i<=n;++i) cin>>a[i];
init();
ST.build(1,n);
while (q--){
int opt,l,r;
cin>>opt>>l>>r;
if (opt==1){
int x;
cin>>x;
ST.modifys(l,r,x);
ST.modifya(l,r,x);
}
else{
int s1=ST.query(l,r,0),s2=ST.query(l,r,1),len=r-l+1;
s2=mul(s2,s2);
add(s2,-s1);
int ans1=mul(s1,f[len]),ans2=mul(s2,g[len]);
add(ans1,ans2);
printf("%d\n",ans1);
}
}
return 0;
}
如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧