如果想了解基础概念和安装可以参考我的另一篇文章
ElasticSearch基础概念和安装
_cat命令用来查看节点信息,如下
127.0.0.1 58 95 0 0.03 0.07 0.08 dilm * 6f3e5d796c52
1691239183 12:39:43 elasticsearch green 1 1 3 3 0 0 0 0 - 100.0%
kkJtLv8bTgW3m7LcaNsw-g 127.0.0.1 127.0.0.1 6f3e5d796c52
这个命令相当于mysql的show databases
green open .kibana_task_manager_1 3GwJZOIQQAmf9t8f3-JopQ 1 0 2 0 38.2kb 38.2kb
green open .apm-agent-configuration 9LnnUcgnQ_-3dM3qfxOTmg 1 0 0 0 283b 283b
green open .kibana_1 QP3CKMY_R12e6lV7XTjN5A 1 0 5 0 18.3kb 18.3kb
保存一个数据,保存在哪个索引的哪个类型下。必须指定id,不能不带id。
请求:
PUT/customer/external/1;在customer索引下的external类型下保存1号数据为
{
“name”:“JohnDoe”
}
响应:
{
"_index": "customer",
"_type": "external",
"_id": "1",
"_version": 1,
"result": "created", 第一次创建叫新建,后面是updated
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1
}
post请求,指定用哪个唯一标识 ,而且同一id发送多次是更新操作,版本号增加。如果不指定id就是永远的新增操作。
请求:
POST/customer/external/1;在customer索引下的external类型下保存1号数据为
{
“name”:“JohnDoe”
}
响应:
{
"_index": "customer",
"_type": "external",
"_id": "1",
"_version": 1,
"result": "created", 第一次创建叫新建,后面是updated
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1
}
url: /customer/external/1
请求方式:GET
响应结果:
{
"_index": "customer",
"_type": "external",
"_id": "1",
"_version": 2,
"_seq_no": 1, 乐观锁,并发控制字段,每次更新就会+1
"_primary_term": 1, 同上,主分片重新分片,如重启就会变化
"found": true,
"_source": {
"name": "zmz" source才是我们自己保存的内容
}
}
乐观锁操作的话,更新携带 ?if_seq_no=0&if_primary_term=1,两个请求一样的话只有一个会成功,另一个会409异常。
url: POST customer/external/1/_update
{
"doc":{ 如果添加了_update 就需要添加"doc"
"name": "John Doew"
}
}
不同:
带_update 对比元数据如果一样就不进行任何操作,版本号不会增加。
看场景;
更新同时增加属性,加了/_update 就得加“doc”
POST customer/external/1/_update
{
“doc”: { “name”: “Jane Doe”, “age”: 20 }
}
DELETE customer/external/1
响应结果
{
"_index": "customer",
"_type": "external",
"_id": "2",
"_version": 3,
"result": "deleted", 这里为deleted
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 7,
"_primary_term": 1
}
删除后再次查询的结果为
{
"_index": "customer",
"_type": "external",
"_id": "2",
"found": false
}
DELETE customer
响应结果:
{
"acknowledged": true
}
删除后查询结果为:
{
"error": {
"root_cause": [
{
"type": "index_not_found_exception",
"reason": "no such index [customer]",
"resource.type": "index_expression",
"resource.id": "customer",
"index_uuid": "_na_",
"index": "customer"
}
],
"type": "index_not_found_exception",
"reason": "no such index [customer]",
"resource.type": "index_expression",
"resource.id": "customer",
"index_uuid": "_na_",
"index": "customer"
},
"status": 404
}
POST customer/external/_bulk
注意下面是两行,两个文档,不是json格式,用kibana操作
POST customer/external/_bulk
{"index":{"_id":"1"}}
{"name": "John Doe" }
{"index":{"_id":"2"}}
{"name": "Jane Doe" }
响应结果
#! Deprecation: [types removal] Specifying types in bulk requests is deprecated.
{
"took" : 11,
"errors" : false,
"items" : [ 每个数据会独立统计它的结果
{
"index" : {
"_index" : "customer",
"_type" : "external",
"_id" : "1",
"_version" : 2,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 1,
"_primary_term" : 1,
"status" : 200
}
},
{
"index" : {
"_index" : "customer",
"_type" : "external",
"_id" : "2",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 2,
"_primary_term" : 1,
"status" : 201
}
}
]
}
POST /_bulk
{ "delete": { "_index": "website", "_type": "blog", "_id": "123" }}
{ "create": { "_index": "website", "_type": "blog", "_id": "123" }}
{ "title": "My first blog post" }
{ "index": { "_index": "website", "_type": "blog" }}
{ "title": "My second blog post" }
{ "update": { "_index": "website", "_type": "blog", "_id": "123"} }
{ "doc" : {"title" : "My updated blog post"} }
响应结果:
#! Deprecation: [types removal] Specifying types in bulk requests is deprecated.
{
"took" : 135, 花费了135毫秒
"errors" : false, 没有出现任何错误
"items" : [
{
"delete" : { 删除操作
"_index" : "website",
"_type" : "blog",
"_id" : "123",
"_version" : 1,
"result" : "not_found",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 0,
"_primary_term" : 1,
"status" : 404 404是因为没有这个记录
}
},
{
"create" : {
"_index" : "website",
"_type" : "blog",
"_id" : "123",
"_version" : 2,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 1,
"_primary_term" : 1,
"status" : 201 201 创建成功
}
},
{
"index" : {
"_index" : "website",
"_type" : "blog",
"_id" : "Fz4FxokBKApesxsABSSJ",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 2,
"_primary_term" : 1,
"status" : 201 201创建成功
}
},
{
"update" : {
"_index" : "website",
"_type" : "blog",
"_id" : "123",
"_version" : 3,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 3,
"_primary_term" : 1,
"status" : 200 更新成功
}
}
]
}
bulk API 以此按顺序执行所有的 action(动作)。如果一个单个的动作因任何原因而失败, 它将继续处理它后面剩余的动作。当 bulk API 返回时,它将提供每个动作的状态(与发送 的顺序相同),所以您可以检查是否一个指定的动作是不是失败了.
准备了一份顾客银行账户信息的虚构的 JSON 文档样本。每个文档都有下列的 schema (模式):
es官方测试数据地址:测试数据地址
POST /bank/account/_bulk
测试数据
ES 支持两种基本方式检索 :
GET bank/_search 检索 bank 下所有信息,包括 type 和 docs
GET bank/_search?q=*&sort=account_number:asc 请求参数方式检索
q=* 查询所有 查询所有的话就不存在最大得分
响应结果:(默认返回10条这里省略了)
{
"took" : 1, Elasticsearch 执行搜索的时间(毫秒)
"timed_out" : false, 告诉我们搜索是否超时
"_shards" : { 告诉我们多少个分片被搜索了,以及统计了成功/失败的搜索分片
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : { 搜索结果
"total" : {
"value" : 1000, 总共检索出来1000条记录
"relation" : "eq" 检索关系是相等
},
"max_score" : 1.0, 最高得分
"hits" : [ 实际的搜索结果数组(默认为前 10 的文档)
{
"_index" : "bank", 索引
"_type" : "account", 类型
"_id" : "1", 唯一id
"_score" : 1.0, 相关性得分
"_source" : {
"account_number" : 1,
"balance" : 39225,
"firstname" : "Amber",
"lastname" : "Duke",
"age" : 32,
"gender" : "M",
"address" : "880 Holmes Lane",
"employer" : "Pyrami",
"email" : "[email protected]",
"city" : "Brogan",
"state" : "IL"
}
}
}
]
}
}
GET bank/_search
{
"query": {
"match_all": {} 匹配所有,有条件就写条件,没有就是大括号
},
"sort": [
{
"account_number": { 账号降序搜索
"order": "desc"
}
}
]
}
HTTP 客户端工具(POSTMAN),get 请求不能携带请求体,我们变为 post 也是一样的 我们 POST 一个 JSON 风格的查询请求体到 _search API。 需要了解,一旦搜索的结果被返回,Elasticsearch 就完成了这次请求,并且不会维护任何 服务端的资源或者结果的 cursor(游标)
Elasticsearch 提供了一个可以执行查询的 Json 风格的 DSL(domain-specific language 领域特 定语言)。这个被称为 Query DSL。该查询语言非常全面,并且刚开始的时候感觉有点复杂, 真正学好它的方法是从一些基础的示例开始的。
{ QUERY_NAME: { ARGUMENT: VALUE, ARGUMENT: VALUE,... } }
GET bank/_search
{ "query": {
"match_all": {}
},
"from": 0,
"size": 5,
"sort": [
{
"account_number": {
"order": "desc"
}
}
]
}
query 定义如何查询
GET bank/_search
{
"query": {
"match_all": {}
},
"from": 0,
"size": 5,
"_source": [ 只查询age和balance
"age",
"balance"
]
}
match 返回 account_number=20 的.匹配age,height等推荐用term。
GET bank/_search
{
"query": {
"match": {
"account_number": "20"
}
}
}
最终查询出 address 中包含 mill 单词的所有记录 ,match 当搜索字符串类型的时候,会进行全文检索,并且每条记录有相关性得分,并根据评分进行排序
GET bank/_search
{
"query": {
"match": {
"address": "mill"
}
}
}
最终查询出 address 中包含 mill 或者 road 或者 mill road 的所有记录,并给出相关性得分
GET bank/_search
{
"query": {
"match": {
"address": "mill road"
}
}
}
将需要匹配的值当成一个整体单词**(不分词)**进行检索 ,查出 address 中包含 mill road 的所有记录,并给出相关性得分 。
GET bank/_search
{
"query": {
"match_phrase": {
"address": "mill road"
}
}
}
查询出state 或者 address中 包含 mill单词的数据
GET bank/_search
{
"query": {
"multi_match": {
"query": "mill",
"fields": [
"state",
"address"
]
}
}
}
bool 用来做复合查询: 复合语句可以合并任何 其它查询语句,包括复合语句,了解这一点是很重要的。这就意味着复合语句之间可以互相嵌套,可以表达非常复杂的逻辑。
GET bank/_search
{
"query": {
"bool": {
"must": [ 可以组合条件,必须达到 must 列举的所有条件
{
"match": {
"address": "mill"
}
},
{
"match": {
"gender": "M"
}
}
],
#should 应该达到 should 列举的条件(也可不匹配,只是应该),如果达到会增加相关文档的评分,并不会改变查询的结果。如果 query 中只有 should 且只有一种匹配规则,那么 should 的条件就会被作为默认匹配条件而去改变查询结果
"should": [
{
"match": {
"address": "lane"
}
}
],
"must_not": [ 可以组合条件,必须不匹配列举的所有条件
{
"match": {
"email": "baluba.com"
}
}
]
}
}
}
并不是所有的查询都需要产生分数(上面的must,should都会产生相关性得分),特别是那些仅用于 “filtering”(过滤)的文档。为了不计算分数 Elasticsearch 会自动检查场景并且优化查询的执行。
GET bank/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"address": "mill"
}
}
],
"filter": { 加上后就不会有相关性得分,每个得分都是0,直接过滤
"range": { 查询余额区间在10000到2000之间的
"balance": {
"gte": 10000,
"lte": 20000
}
}
}
}
}
}
和 match 一样。匹配某个属性的值。全文检索字段用 match,其他非 text 字段匹配用term。精确的,比如age,height等用term,会分词全文检索的就用match。
GET bank/_search
{
"query": {
"bool": {
"must": [
{
"term": {
"age": {
"value": "28"
}
}
},
{
"match": {
"address": "990 Mill Road"
}
}
]
}
}
}
聚合提供了从数据中分组和提取数据的能力。最简单的聚合方法大致等于 SQL GROUP BY 和 SQL 聚合函数。在 Elasticsearch 中,您有执行搜索返回 hits(命中结果),并且同时返 回聚合结果,把一个响应中所有hits(命中结果)分隔开的能力。这是非常强大且有效的, 您可以执行查询和多个聚合,并且在一次使用中得到各自的(任何一个的)返回结果,使用 一次简洁和简化的 API 来避免网络往返。
“aggs”就是用来聚合的函数
搜索 address 中包含mill 的所有人的年龄分布以及平均年龄,但不显示这些人的详情。
GET bank/_search
{
"query": {
"match": {
"address": "mill"
}
},
"aggs": { 聚合函数
"group_by_state": { 执行聚合后起的名字
"terms": { 查询聚合有多少种可能(比如不同年龄的人分别有多少人),求分布
"field": "age" “field” 字段
}
},
"avg_age": { 执行聚合后起的名字
"avg": {
"field": "age"
}
}
},
"size": 0
}
响应结果:
{
"took" : 20,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 4, 命中记录
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : { 聚合结果
"avg_age" : {
"value" : 34.0 平均年龄34
},
"group_by_state" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [ 三钟不同年龄段的人数
{
"key" : 38,
"doc_count" : 2
},
{
"key" : 28,
"doc_count" : 1
},
{
"key" : 32,
"doc_count" : 1
}
]
}
}
}
复杂:
按照年龄聚合,并且请求这些年龄段的这些人的平均薪资(套娃,在聚合的里面再次聚合)
GET bank/account/_search
{
"query": {
"match_all": {}
},
"aggs": {
"age_avg": {
"terms": {
"field": "age",
"size": 1000
},
"aggs": { 在里面进行子聚合 求出每个年龄段的人数和平均薪资
"banlances_avg": {
"avg": {
"field": "balance"
}
}
}
}
},
"size": 1000
}
复杂:查出所有年龄分布,并且这些年龄段中 M 的平均薪资和 F 的平均薪资以及这个年龄
段的总体平均薪资
GET bank/account/_search
{
"query": {
"match_all": {}
},
"aggs": {
"age_agg": {
"terms": {
"field": "age",
"size": 100
},
"aggs": {
"gender_agg": {
"terms": {
"field": "gender.keyword", 这里的性别被定义为了文本类型,所以得用keyword转为关键词
"size": 100
},
"aggs": {
"balance_avg": { “M”和“F”分别有多少人,平均薪资有多少
"avg": {
"field": "balance"
}
}
}
},
"balance_avg": { 全年龄段得平均薪资是多少
"avg": {
"field": "balance"
}
}
}
}
},
"size": 1000
}
Mapping(映射) Mapping是用来定义一个文档(document),以及它所包含的属性(field)是如何存储和索引的。比如,使用 mapping 来定义:
哪些字符串属性应该被看做全文本属性(full text fields)。
哪些属性包含数字,日期或者地理位置。
文档中的所有属性是否都能被索引(_all 配置)。
日期的格式。
自定义映射规则来执行动态添加属性。
查看 mapping 信息:(可以看到当前数据的索引对应的类型)
字段类型
GET bank/_mapping 查询银行下面的每一个字段的类型
{
"bank" : {
"mappings" : {
"properties" : { 属性包含每一个字段的类型
"account_number" : { 比如account_number是long类型的
"type" : "long"
},
"address" : {
"type" : "text", address是text类型的,就会进行全文检索,会进行分词
"fields" : {
"keyword" : { 子属性,如果用address.keyword子属性就会进行精确匹配查询
"type" : "keyword",
"ignore_above" : 256
}
}
},
"age" : {
"type" : "long"
},
"balance" : {
"type" : "long"
},
"city" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"email" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"employer" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"firstname" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"gender" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"lastname" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"state" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
1、创建索引并指定映射
PUT /my-index
{
"mappings": {
"properties": {
"age": {
"type": "integer"
},
"email": {
"type": "keyword"
},
"name": {
"type": "text"
}
}
}
}
PUT /my-index/_mapping
{
"properties": {
"employee-id": {
"type": "keyword",
"index": false
}
}
}
对于已经存在的映射字段,我们不能更新。更新必须创建新的索引进行数据迁移。
1、把之前的索引的映射查出来,重新创建一个新的索引。然后再使用下面的方式迁移
POST _reindex
POST _reindex [固定写法]
{ "source": { "index": "twitter" },"dest": { "index": "new_twitter" } }
2、将旧索引的type下的数据进行迁移到新的索引
POST _reindex
{
"source": {
"index": "twitter", 老的索引
"type": "tweet" 索引下的类型
},
"dest": {
"index": "tweets" 目标迁移的索引
}
}
解决:
1)、将索引从多类型迁移到单类型,每种类型(前面提到的type,类似于表)文档一个独立索引
2)、将已存在的索引下的类型数据,全部迁移到指定位置即可。详见数据迁移
一个 tokenizer(分词器)接收一个字符流,将之分割为独立的 tokens(词元,通常是独立 的单词),然后输出 tokens 流。 例如,whitespace tokenizer 默认分词器遇到空白字符时分割文本。它会将文本 “Quick brown fox!” 分割 为 [Quick, brown, fox!]。 该 tokenizer(分词器)还负责记录各个 term(词条)的顺序或 position 位置(用于 phrase 短 语和 word proximity 词近邻查询),以及 term(词条)所代表的原始 word(单词)的 start (起始)和 end(结束)的 character offsets(字符偏移量)(用于高亮显示搜索的内容)。 Elasticsearch 提供了很多内置的分词器,可以用来构建 custom analyzers(自定义分词器)。
注意:不能用默认 elasticsearch-plugin install xxx.zip 进行自动安装
分词器 对应 es 版本安装
yum install wget
这里再docker安装es的时候已经把es的安装目录挂在在了我的根目录的mydata下面了
cd /
cd mydata
cd elasticsearch
# 进入elasticsearch的plugins目录下面
cd plugins
#然后使用wget安装对应es版本的ik分词器到plugins下面(这里用wget太慢了,我从外网下载上传进去,外网路径https://github.com/medcl/elasticsearch-analysis-ik/releases/tag/v7.4.2)
wget https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.4.2/elasticsearch-anal ysis-ik-7.4.2.zip
#解压并删除压缩包
unzip elasticsearch-analysis-ik-7.4.2.zip -d analysis-ik
rm -rf elasticsearch-analysis-ik-7.4.2.zip
#修改文件权限
chmod -R 777 analysis-ik
#进入elasticsearch容器内部
docker ps
docker exec -it 6f3e /bin/bash
#可以发现容器内部的plugins下面也已经有了安装好的ik分词器,检查安装的plugins
elasticsearch-plugin list
#退出容器
exit;
#重启es
docker restart elasticsearch
#刷新自己的kibana就可以使用分词器了
POST _analyze
{
"text": "我是中国人"
}
响应结果:
{
"tokens" : [
{
"token" : "我",
"start_offset" : 0,
"end_offset" : 1,
"type" : "" ,
"position" : 0
},
{
"token" : "是",
"start_offset" : 1,
"end_offset" : 2,
"type" : "" ,
"position" : 1
},
{
"token" : "中",
"start_offset" : 2,
"end_offset" : 3,
"type" : "" ,
"position" : 2
},
{
"token" : "国",
"start_offset" : 3,
"end_offset" : 4,
"type" : "" ,
"position" : 3
},
{
"token" : "人",
"start_offset" : 4,
"end_offset" : 5,
"type" : "" ,
"position" : 4
}
]
}
POST _analyze
{
"analyzer": "ik_smart",
"text": "我是中国人"
}
响应结果:
{
"tokens" : [
{
"token" : "我",
"start_offset" : 0,
"end_offset" : 1,
"type" : "CN_CHAR",
"position" : 0
},
{
"token" : "是",
"start_offset" : 1,
"end_offset" : 2,
"type" : "CN_CHAR",
"position" : 1
},
{
"token" : "中国人",
"start_offset" : 2,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 2
}
]
}
POST _analyze
{
"analyzer": "ik_max_word",
"text": "我是中国人"
}
响应结果:
{
"tokens" : [
{
"token" : "我",
"start_offset" : 0,
"end_offset" : 1,
"type" : "CN_CHAR",
"position" : 0
},
{
"token" : "是",
"start_offset" : 1,
"end_offset" : 2,
"type" : "CN_CHAR",
"position" : 1
},
{
"token" : "中国人",
"start_offset" : 2,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "中国",
"start_offset" : 2,
"end_offset" : 4,
"type" : "CN_WORD",
"position" : 3
},
{
"token" : "国人",
"start_offset" : 3,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 4
}
]
}
能够看出不同的分词器,分词有明显的区别,所以以后定义一个索引不能再使用默 认的 mapping 了,要手工建立 mapping, 因为要选择分词器。
可以先查看内存够不够 free-m 命令
#切换到/mydata目录下
Cd /
cd mydata
#创建nginx目录
mkdir nginx
#启动安装nginx(这个只是为了复制里面的配置文件,并不是要装的版本)
docker run -p 80:80 --name nginx -d nginx:1.10
#将容器内的配置文件拷贝到当前目录:
docker container cp nginx:/etc/nginx .
#停掉删除nginx
docker stop nginx
docker rm nginx
#到mydata下面给nginx重命名为conf
mv nginx conf
#重新创建nginx目录,并把conf移动到nginx目录下面
mkdir nginx
mv conf nginx/
#创建新的 nginx;执行以下命令
docker run -p 80:80 --name nginx \
-v /mydata/nginx/html:/usr/share/nginx/html \
-v /mydata/nginx/logs:/var/log/nginx \
-v /mydata/nginx/conf:/etc/nginx \
-d nginx:1.10
#查看nginx状态
docker ps
#访问nginx端口80会发现403是因为没有任何页面
cd html/
vi index.html
输入
<h1>hello nginx</h1>
#创建自定义词库txt
mkdir es
cd es
vi zmz.txt
输入需要识别的名词
比如
蔡徐坤
鸡你太美
#重新刷新页面
#开机自启
docker udpate nginx --restart=always
cd /mydata/elasticsearch/plugins/analysis-ik/config/
#修改ik配置
vi IKAnalyzer.cfg.xml
----------------------------如下--------------------------------
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment> <!--用户可以在这里配置自己的扩展字典 -->
<entry key="ext_dict"></entry> <!--用户可以在这里配置自己的扩展停止词字典-->
<entry key="ext_stopwords"></entry> <!--用户可以在这里配置远程扩展字典 -->
<entry key="remote_ext_dict">http://yourip/es/zmz.txt</entry>
<!--用户可以在这里配置远程扩展停止词字典-->
<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>
------------------------------------------------------------------
#重启es
docker restart elasticsearch
#还可以设置开机自启
docker udpate elasticsearch --restart=always
更新完成后,es 只会对新增的数据用新词分词。历史数据是不会重新分词的。如果想要历 史数据重新分词。需要执行:
POST my_index/_update_by_query?conflicts=proceed
9300:TCP
9200:HTTP
JestClient:非官方,更新慢
RestTemplate:模拟发 HTTP 请求,ES 很多操作需要自己封装,麻烦
HttpClient:同上
Elasticsearch-Rest-Client:官方 RestClient,封装了 ES 操作,API 层次分明,上手简单
最终选择 Elasticsearch-Rest-Client(elasticsearch-rest-high-level-client)
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high.html
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>7.6.2</version>
</dependency>
@Configuration
public class GulimallElasticSearchConfig {
// @Bean
// public RestHighLevelClient esRestClient(){
// RestHighLevelClient client = new RestHighLevelClient(
// RestClient.builder(new HttpHost("172.20.10.11", 9200, "http")));
// return client;
// }
public static final RequestOptions COMMON_OPTIONS;
static {
RequestOptions.Builder builder = RequestOptions.DEFAULT.toBuilder();
// builder.addHeader("Authorization", "Bearer " + TOKEN);
// builder.setHttpAsyncResponseConsumerFactory(
// new HttpAsyncResponseConsumerFactory
// .HeapBufferedResponseConsumerFactory(30 * 1024 * 1024 * 1024));
COMMON_OPTIONS = builder.build();
}
@Bean
public RestHighLevelClient esRestClient(){
RestHighLevelClient client = new RestHighLevelClient(
RestClient.builder(new HttpHost("172.20.10.11", 9200, "http")));
return client;
}
}
参照官方文档:
package com.xunqi.gulimall.search;
import com.alibaba.fastjson.JSON;
import com.xunqi.gulimall.search.config.GulimallElasticSearchConfig;
import lombok.Data;
import lombok.Getter;
import lombok.Setter;
import lombok.ToString;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.xcontent.XContentType;
import org.elasticsearch.index.query.QueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.Aggregations;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.aggregations.bucket.terms.TermsAggregationBuilder;
import org.elasticsearch.search.aggregations.metrics.Avg;
import org.elasticsearch.search.aggregations.metrics.AvgAggregationBuilder;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
import javax.annotation.Resource;
import java.io.IOException;
@RunWith(SpringRunner.class)
@SpringBootTest
public class GulimallSearchApplicationTests {
@Resource
private RestHighLevelClient client;
@ToString
@Data
static class Account {
private int account_number;
private int balance;
private String firstname;
private String lastname;
private int age;
private String gender;
private String address;
private String employer;
private String email;
private String city;
private String state;
}
/**
* 复杂检索:在bank中搜索address中包含mill的所有人的年龄分布以及平均年龄,平均薪资
*
* @throws IOException
*/
@Test
public void searchData() throws IOException {
//1. 创建检索请求
SearchRequest searchRequest = new SearchRequest();
//1.1)指定索引
searchRequest.indices("bank");
//1.2)构造检索条件
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
sourceBuilder.query(QueryBuilders.matchQuery("address", "Mill"));
//1.2.1)按照年龄分布进行聚合
TermsAggregationBuilder ageAgg = AggregationBuilders.terms("ageAgg").field("age").size(10);
sourceBuilder.aggregation(ageAgg);
//1.2.2)计算平均年龄
AvgAggregationBuilder ageAvg = AggregationBuilders.avg("ageAvg").field("age");
sourceBuilder.aggregation(ageAvg);
//1.2.3)计算平均薪资
AvgAggregationBuilder balanceAvg = AggregationBuilders.avg("balanceAvg").field("balance");
sourceBuilder.aggregation(balanceAvg);
System.out.println("检索条件:" + sourceBuilder);
searchRequest.source(sourceBuilder);
//2. 执行检索
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
System.out.println("检索结果:" + searchResponse);
//3. 将检索结果封装为Bean
SearchHits hits = searchResponse.getHits();
SearchHit[] searchHits = hits.getHits();
for (SearchHit searchHit : searchHits) {
String sourceAsString = searchHit.getSourceAsString();
Account account = JSON.parseObject(sourceAsString, Account.class);
System.out.println(account);
}
//4. 获取聚合信息
Aggregations aggregations = searchResponse.getAggregations();
Terms ageAgg1 = aggregations.get("ageAgg");
for (Terms.Bucket bucket : ageAgg1.getBuckets()) {
String keyAsString = bucket.getKeyAsString();
System.out.println("年龄:" + keyAsString + " ==> " + bucket.getDocCount());
}
Avg ageAvg1 = aggregations.get("ageAvg");
System.out.println("平均年龄:" + ageAvg1.getValue());
Avg balanceAvg1 = aggregations.get("balanceAvg");
System.out.println("平均薪资:" + balanceAvg1.getValue());
}
/**
* @throws IOException
*/
@Test
public void searchState() throws IOException {
//1. 创建检索请求
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
// sourceBuilder.query(QueryBuilders.termQuery("city", "Nicholson"));
// sourceBuilder.from(0);
// sourceBuilder.size(5);
// sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));
QueryBuilder matchQueryBuilder = QueryBuilders.matchQuery("state", "AK");
// .fuzziness(Fuzziness.AUTO)
// .prefixLength(3)
// .maxExpansions(10);
sourceBuilder.query(matchQueryBuilder);
SearchRequest searchRequest = new SearchRequest();
searchRequest.indices("bank");
searchRequest.source(sourceBuilder);
//2. 执行检索
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
System.out.println(searchResponse);
}
/**
* 测试ES数据
* 更新也可以
*/
@Test
public void indexData() throws IOException {
IndexRequest indexRequest = new IndexRequest("users");
indexRequest.id("1"); //数据的id
// indexRequest.source("userName","zhangsan","age",18,"gender","男");
User user = new User();
user.setUserName("zhangsan");
user.setAge(18);
user.setGender("男");
String jsonString = JSON.toJSONString(user);
indexRequest.source(jsonString, XContentType.JSON); //要保存的内容
//执行操作
IndexResponse index = client.index(indexRequest, GulimallElasticSearchConfig.COMMON_OPTIONS);
//提取有用的响应数据
System.out.println(index);
}
@Getter
@Setter
class User {
private String userName;
private String gender;
private Integer age;
}
@Test
public void contextLoads() {
System.out.println(client);
}
}
至此,elasticsearch就可以使用了!!!