- 【CodeBlocks】搭建OpenCV环境指南
万众珩
【CodeBlocks】搭建OpenCV环境指南CodeBlocks搭建OpenCV环境项目地址:https://gitcode.com/Resource-Bundle-Collection/e1e1a本资源提供了详细的教程,帮助您在CodeBlocks集成开发环境中顺利搭建OpenCV环境。OpenCV是一个开源的计算机视觉和机器学习软件库,广泛应用于图像处理和视频分析领域。通过这篇指南,即便是
- 图神经网络:拓扑数据分析的新时代
Jason_Orton
神经网络数据分析人工智能
随着图数据的广泛应用,图神经网络(GraphNeuralNetwork,GNN)作为一种强大的深度学习工具,逐渐成为机器学习领域中的一颗新星。图数据在许多现实世界问题中无处不在,诸如社交网络、交通网络、分子结构、推荐系统等都可以被建模为图结构。图神经网络通过直接处理图结构数据,能够更好地捕捉节点之间的关系信息,从而在众多任务中展现出了优异的性能。本文将深入探讨图神经网络的基本原理、常见的算法、应用
- Spark之PySpark
james二次元
大数据SparkPythonPySpark
PySpark是ApacheSpark的PythonAPI,它允许开发者使用Python编程语言进行大规模数据处理和分析。ApacheSpark是一个快速、通用、可扩展的大数据处理引擎,支持批处理、流处理、机器学习、图计算等多种数据处理模式。PySpark使得Python开发者能够利用Spark强大的分布式计算能力,处理大数据集,并执行高效的并行计算。一、PySpark核心概念1.RDD(弹性分布
- 机器学习——无监督学习(k-means算法)
张起灵ovo
机器学习入门机器学习算法学习
1、K-Means聚类算法K表示超参数个数,如分成几个类别,K值就取多少。若无需求,可使用网格搜索找到最佳的K。步骤:1、随机设置K个特征空间内的点作为初始聚类中心;2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记种类;3、接着对标记的聚类中心之后,重新计算出每个聚类的中心点(平均值);4、如果计算得出的新中心点与原中心点一样,那么结束,否则执行第二步。means表
- pandas series 相加_Numpy和Pandas教程
weixin_39778393
pandasseries相加
Pandas简介-python数据分析library-基于numpy(对ndarray的操作)-有一种用python做Excel/SQL/R的感觉-为什么要学习pandas?-pandas和机器学习的关系,数据预处理,featureengineering。-pandas的DataFrame结构和大家在大数据部分见到的spark中的DataFrame非常类似。目录-numpy速成-Series-Da
- 深度学习-自学手册
谁用了尧哥这个昵称
AI深度学习
人工智能机器学习神经网络前馈神经网络:没有回路的反馈神经网络:有回路的DNN深度神经网络CNN卷积神经网络RNN循环神经网络LSTM是RNN的一种,长短期记忆网络自然语言处理神经网络神经元-分类器Hebb学习方法,随机–类似SGD一篇神经网络入门BP反向传播,表示很复杂的函数/空间分布从最后一层往前调整参数,反复循环该操作y=a(wx+b)x输入y输出a激活函
- 自然语言处理(Natural Language Processing, NLP)的主要应用及核心技术
彬彬侠
自然语言处理NLP自然语言处理
自然语言处理(NLP)是人工智能(AI)的一个重要分支,旨在让计算机能够理解、生成和处理人类语言。NLP在多个领域有着广泛的应用,并结合了多种先进的技术,包括机器学习(ML)、深度学习(DL)、统计模型以及规则方法。1.自然语言处理的主要应用1.1机器翻译(MachineTranslation,MT)应用场景:在线翻译:GoogleTranslate、DeepL、BaiduTranslate。跨语
- 机器学习数学基础:32.复本信度
@心都
机器学习算法人工智能
复本信度(Parallel-FormsReliability)深度详解教程专为小白打造,零基础也能轻松掌握一、深度解读复本信度复本信度,也被称为“平行测验信度”,其核心要义是借助两个虽然不同但在各方面等效的测验版本,对同一批受测者进行多次测量,然后对测量结果的一致性程度展开评估。从本质上讲,它是衡量测验稳定性的重要指标,能够有效减少因题目重复出现而致使受测者产生练习或记忆效应,进而影响测验结果真实
- 机器学习中的过拟合、欠拟合与正则化
喜-喜
人工智能机器学习人工智能
在机器学习的世界里,过拟合与欠拟合是模型训练过程中常常会遇到的两大问题,而正则化则是应对过拟合的重要手段。理解它们对于构建高性能的机器学习模型至关重要。一、过拟合与欠拟合(一)过拟合 定义:过拟合指的是模型在训练数据上表现得非常好,几乎能完美地拟合训练数据中的每一个细节,但在测试数据或新数据上却表现很差,泛化能力极低。简单来说,就是模型过度学习了训练数据中的噪声和细节,而忽略了数据背后的真实
- 【漫话机器学习系列】106.线性激活函数(Linear Activation Function)
IT古董
漫话机器学习系列专辑机器学习人工智能激活函数
1.什么是线性激活函数?线性激活函数是一种最简单的激活函数,数学表达式为:即输出与输入保持完全线性关系。这意味着对于任何输入值x,其输出将等于输入值本身,函数图像为一条通过原点的直线。在神经网络中,激活函数的作用是将网络的线性组合映射到某种非线性输出。传统的线性激活函数常用于一些特定场景,比如回归问题,其中预测的目标值与输入特征之间可能存在线性关系。2.线性激活函数的特点线性关系:与其他常见的激活
- 通过Python编程语言实现“机器学习”小项目教程案例
指尖下的技术
DeepSeekpython机器学习开发语言
以下为你提供一个使用Python实现简单机器学习项目的教程案例,此案例将使用鸢尾花数据集进行分类任务,运用经典的支持向量机(SVM)算法。步骤1:环境准备首先,你要确保已经安装了必要的Python库,像scikit-learn、pandas、matplotlib和seaborn。可以使用以下命令进行安装:pipinstallscikit-learnpandasmatplotlibseaborn步骤
- 数据安全_笔记系列09_人工智能(AI)与机器学习(ML)在数据安全中的深度应用
宁宁可可
数据安全数据安全
数据安全_笔记系列09_人工智能(AI)与机器学习(ML)在数据安全中的深度应用人工智能与机器学习技术通过自动化、智能化的数据分析,显著提升了数据分类、威胁检测的精度与效率,尤其在处理非结构化数据、复杂威胁场景和降低误报/漏报率方面表现突出。以下从技术原理、应用场景、实施流程、工具与案例展开解析:一、AI/ML如何提升数据安全能力?1.核心价值复杂数据识别:解析非结构化数据(文本、图像、音视频)中
- AI人工智能机器学习之聚类分析
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器学习之聚类分析,以KMeans、AgglomerativeClustering、DBSCAN为例,从代码层面讲述机器学习中的聚类分析。2、聚类分析-简介聚类分析是一种无监督学习的方法,用于将数据集中的样本划分为不同的组(簇),使得同一组中的样本相似度较高,而不同组之间的样本相似度较低。sklearn.cluster提供了多种聚类算法K均值聚类(K-MeansCl
- 【机器学习与数据挖掘实战】案例15:基于LDA模型的电商产品评论数据情感分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘人工智能LDA主题模型情感分析文本分析python
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- Accord.NET框架功能介绍
绀目澄清
Accord.NETAccord.NET
机器学习组件Accord.NET框架功能介绍1.基本功能与介绍Accord.NET为.NET应用程序提供了统计分析、机器学习、图像处理、计算机视觉相关的算法。Accord.NET框架扩展了AForge.NET框架,提供了一些新功能。同时为.NET环境下的科学计算提供了一个完整的开发环境。该框架被分成了多个程序集,可以直接从官网下载安装文件或者使用NuGet得到。可以参考以下链接:https://g
- KNN 算法性能跃升秘籍:优化实战,打造高效分类利器!
清水白石008
开发语言学习笔记人工智能算法分类机器学习
KNN算法性能跃升秘籍:优化实战,打造高效分类利器!今天,我想和大家深入探讨一种经典而实用的机器学习算法——K近邻(K-NearestNeighbors,KNN)。KNN算法以其原理简单、易于实现、无需显式训练等特点,在模式识别、分类、回归等领域得到了广泛应用。然而,正如任何算法一样,基础的KNN算法也存在着性能瓶颈,尤其是在处理大规模数据集和高维度特征时,其计算效率和预测精度都可能受到挑战。你是
- Cassini_Network-Aware Job Schedulingin Machine Learning Clusters
一只积极向上的小咸鱼
机器学习人工智能
这篇论文介绍了CASSINI,一种用于机器学习(ML)集群的网络感知作业调度器。研究背景背景介绍:这篇文章的研究背景是深度学习数据集和模型规模的不断增长,对高效GPU集群的需求日益增加。分布式机器学习训练工作负载的通信开销占据了训练迭代时间的很大一部分,而现有的ML调度器往往忽略了ML训练作业的通信模式。研究问题:该问题的研究目标是开发一种简单而有效的方法,能够在网络链路中高效地放置多个ML作业,
- 机器学习----奥卡姆剃刀定律
AI自修室
计算机视觉面试题机器学习人工智能
奥卡姆剃刀定律(Occam’sRazor)是一条哲学原则,通常表述为“如无必要,勿增实体”(Entitiesshouldnotbemultipliedbeyondnecessity)或“在其他条件相同的情况下,最简单的解释往往是最好的”。这一原则由14世纪的英格兰逻辑学家和神学家威廉·奥卡姆提出。它提倡在解释现象时,应尽量减少假设和复杂性,优先选择最简单的解释。奥卡姆剃刀定律对机器学习模型优化的启
- 29、深度学习-自学之路-深入理解-NLP自然语言处理-做一个完形填空,让机器学习更多的内容程序展示
小宇爱
深度学习-自学之路深度学习自然语言处理机器学习
importsys,random,mathfromcollectionsimportCounterimportnumpyasnpnp.random.seed(1)random.seed(1)f=open('reviews.txt')raw_reviews=f.readlines()f.close()tokens=list(map(lambdax:(x.split("")),raw_reviews)
- 泛微全面接入DeepSeek大模型,助力组织升级数智化应用场景
泛微OA办公系统
泛微DeepSeek
近日,泛微公司旗下所有产品全面接入DeepSeek大模型,借助泛微2024年发布的数智大脑Xiaoe.AI,可快捷方便为客户搭建“DeepSeek大模型+专业小模型+智能体”的数智底座,并可量身定制更安全、高效、国产化的数智化解决方案,助力组织管理与业务、财务一体化数智运营升级。在接入DeepSeek大模型后,泛微将借助DeepSeek强大的自然语言处理、机器学习、推理等能力,显著提升泛微各项产品
- 智能算法的全面应用:量子计算与自动化学习在各行业的创新路径探索
智能计算研究中心
其他
内容概要在现代社会,智能算法的应用逐渐渗透到各个行业,成为推动科技进步的重要力量。自动化机器学习算法通过简化模型训练和调优的过程,为数据科学家节省了大量时间。可解释性算法则旨在让模型的决策过程更加透明,从而提高用户对算法决策的信任。此外,量子算法以其独特的计算能力,展现出在处理复杂问题时潜在的优势。金融风控领域通过运用金融风险预测模型,不仅提高了风险管理效率,还提升了预警能力。医疗影像分析则借助卷
- 一周掌握Flutter开发--4、导航与路由
江上清风山间明月
Flutterflutterandroid路由导航onGenerateRouteNavigator.pushNavigator.pop
文章目录4.导航与路由核心功能4.1基础跳转:`Navigator.push`和`Navigator.pop`4.2命名路由:`routes`和`onGenerateRoute`4.3路由传参和返回结果推荐工具:`go_router`4.4`go_router`的使用总结*4.导航与路由导航与路由是Flutter应用中管理页面跳转的核心功能。Flutter提供了多种方式来实现页面导航,从简单的跳转
- 码上用它开始Flutter混合开发——FlutterBoost
阿里云云栖号
native容器
为什么要混合方案具有一定规模的App通常有一套成熟通用的基础库,尤其是阿里系App,一般需要依赖很多体系内的基础库。那么使用Flutter重新从头开发App的成本和风险都较高。所以在NativeApp进行渐进式迁移是Flutter技术在现有NativeApp进行应用的稳健型方式。闲鱼在实践中沉淀出一套自己的混合技术方案。在此过程中,我们跟GoogleFlutter团队进行着密切的沟通,听取了官方的
- 使用Python和Vosk库实现语音识别
车载testing
python语音识别开发语言
使用Python和Vosk库实现语音识别在人工智能和机器学习领域,语音识别技术正变得越来越重要。Python作为一种强大的编程语言,拥有丰富的库和框架,可以方便地实现语音识别功能。今天,我们将介绍如何使用Python中的SpeechRecognition库和Vosk模型来实现语音识别。一、SpeechRecognition库的安装SpeechRecognition库是Python中一个简单易用的语
- flutter_boost接入及分析
Huang兄
Flutterandroidandroiddartflutterfluterboost
2019-09-12文章目录集成过程添加依赖在flutter_nodule侧在原生Android侧尝试flutter_boost流程在flutter中打开flutter或者原生在flutter中关闭页面flutter_boost地址:https://github.com/alibaba/flutter_boost集成之后的项目地址:https://github.com/huangyuanlove/
- flutter: table calendar笔记
蜉蝣之翼❉
flutter笔记
pubdev:table_calendar3.2.0我来详细解释TableCalendar是如何根据不同的CalendarFormat来显示界面的。主要逻辑在CalendarCore中实现。核心逻辑分为以下几个部分:页面数量计算-_getPageCount方法根据不同格式计算总页数:int_getPageCount(CalendarFormatformat,DateTimefirst,DateTi
- Flutter接入FlutterBoost进行跳转,并实现Flutter与Native的通信
氦客
跨平台移动开发FlutterFlutterBoostAndroid接入跳转
FlutterBoost是什么FlutterBoost是阿里系闲鱼技术团队开源的Flutter插件。FlutterBoost的理念是将Flutter像Webview那样来使用。在现有应用程序中同时管理Native页面和Flutter页面并非易事,FlutterBoost帮你处理页面的映射和跳转,使你只需关心页面的名字和参数即可(通常可以是URL)。如何接入FlutterBoost一般参考Flutt
- Python库Numpy学习+代码实例
海绵宝宝
pythonnumpy学习机器学习
前言Numpy是python语言的一个扩充程序库,支持高端大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库,现已成为机器学习的必备模块。本文章对Numpy库的原文档进行了学习,可作为文档阅读理解来进行阅读。附原文档链接如下:Numpy库文档库的介绍该库中的对象为多维数组,原名为ndarray,因此经常被叫做array。python中也有一个库叫做array,但是与这里的ndarra
- 深度学习:从神经网络到智能应用
Jason_Orton
深度学习神经网络人工智能机器学习
目录引言一.什么是深度学习?二.深度学习的基本原理1.神经网络的组成2.激活函数3.反向传播(Backpropagation)三.深度学习的常见模型四.深度学习的应用场景五.深度学习的挑战与未来结语引言深度学习(DeepLearning)作为机器学习的一个分支,近年来在人工智能领域取得了革命性的进展。无论是语音识别、图像识别,还是自动驾驶、自然语言处理,深度学习都在推动着技术的发展和行业的变革。那
- Flutter 运行新项目时报错 Build failed due to use of deprecated Android v1 embedding.(已解决)
--程
flutterBugandroidflutter
问题描述:构建flutter项目时错误了这个错误:BuildfailedduetouseofdeprecatedAndroidv1embedding。问题原因:使用了flutterv2的sdk编译项目,而你的项目是旧的v1时候开发的。解决方法:第一步先/android/app/src/main下的找到AndroidManifest.xml文件第二步修改application标签删除name字段值并
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。