using System;
namespace Legalsoft.Truffer
{
///
/// 多维下坡单纯形法
/// Downhill Simplex Method in Multidimensions
///
public class Amoeba
{
private int nfunc { get; set; }
private int mpts { get; set; }
private int ndim { get; set; }
public double fmin { get; set; }
private double ftol { get; }
private double[] y { get; set; }
private double[,] p { get; set; }
public Amoeba(double ftoll)
{
this.ftol = ftoll;
}
public double[] minimize(double[] point, double del, RealValueFun func)
{
double[] dels = new double[point.Length];
for (int i = 0; i < dels.Length; i++)
{
dels[i] = del;
}
return minimize(point, dels, func);
}
public double[] minimize(double[] point, double[] dels, RealValueFun func)
{
int ndim = point.Length;
double[,] pp = new double[ndim + 1, ndim];
for (int i = 0; i < ndim + 1; i++)
{
for (int j = 0; j < ndim; j++)
{
pp[i, j] = point[j];
}
if (i != 0)
{
pp[i, i - 1] += dels[i - 1];
}
}
return (minimize(pp, func));
}
public double[] minimize(double[,] pp, RealValueFun func)
{
const int NMAX = 5000;
const double TINY = 1.0e-10;
mpts = pp.GetLength(0);
ndim = pp.GetLength(1);
double[] psum = new double[ndim];
double[] pmin = new double[ndim];
double[] x = new double[ndim];
p = pp;
//y.resize(mpts);
y = new double[mpts];
for (int i = 0; i < mpts; i++)
{
for (int j = 0; j < ndim; j++)
{
x[j] = p[i, j];
}
y[i] = func.funk(x);
}
nfunc = 0;
get_psum(p, psum);
for (; ; )
{
int ilo = 0;
int ihi = y[0] > y[1] ? (0) : (1);
int inhi = y[0] > y[1] ? (1) : (0);
for (int i = 0; i < mpts; i++)
{
if (y[i] <= y[ilo])
{
ilo = i;
}
if (y[i] > y[ihi])
{
inhi = ihi;
ihi = i;
}
else if (y[i] > y[inhi] && i != ihi)
{
inhi = i;
}
}
double rtol = 2.0 * Math.Abs(y[ihi] - y[ilo]) / (Math.Abs(y[ihi]) + Math.Abs(y[ilo]) + TINY);
if (rtol < ftol)
{
Globals.SWAP(ref y[0], ref y[ilo]);
for (int i = 0; i < ndim; i++)
{
Globals.SWAP(ref p[0, i], ref p[ilo, i]);
pmin[i] = p[0, i];
}
fmin = y[0];
return (pmin);
}
if (nfunc >= NMAX)
{
throw new Exception("NMAX exceeded");
}
nfunc += 2;
double ytry = amotry(p, y, psum, ihi, -1.0, func);
if (ytry <= y[ilo])
{
ytry = amotry(p, y, psum, ihi, 2.0, func);
}
else if (ytry >= y[inhi])
{
double ysave = y[ihi];
ytry = amotry(p, y, psum, ihi, 0.5, func);
if (ytry >= ysave)
{
for (int i = 0; i < mpts; i++)
{
if (i != ilo)
{
for (int j = 0; j < ndim; j++)
{
p[i, j] = psum[j] = 0.5 * (p[i, j] + p[ilo, j]);
}
y[i] = func.funk(psum);
}
}
nfunc += ndim;
get_psum(p, psum);
}
}
else
{
--nfunc;
}
}
}
public void get_psum(double[,] p, double[] psum)
{
for (int j = 0; j < ndim; j++)
{
double sum = 0.0;
for (int i = 0; i < mpts; i++)
{
sum += p[i, j];
}
psum[j] = sum;
}
}
public double amotry(double[,] p, double[] y, double[] psum, int ihi, double fac, RealValueFun func)
{
double[] ptry = new double[ndim];
double fac1 = (1.0 - fac) / ndim;
double fac2 = fac1 - fac;
for (int j = 0; j < ndim; j++)
{
ptry[j] = psum[j] * fac1 - p[ihi, j] * fac2;
}
double ytry = func.funk(ptry);
if (ytry < y[ihi])
{
y[ihi] = ytry;
for (int j = 0; j < ndim; j++)
{
psum[j] += ptry[j] - p[ihi, j];
p[ihi, j] = ptry[j];
}
}
return ytry;
}
}
}