- Spring Bean 生命周期 SmartLifecycle接口介绍和使用场景 和 Lifecycle对比
极光雨雨
#Spring全家springjava
在SpringBoot中,SmartLifecycle是org.springframework.context.Lifecycle接口的一个扩展接口,它提供了更细粒度的控制生命周期的方法。Spring容器管理Bean的生命周期时,可以通过实现SmartLifecycle接口来定义自定义的启动和关闭逻辑。一、使用前提需要在Spring容器启动完成后执行某些初始化操作。需要在应用关闭前做一些清理工作(
- 从零开始学前端(HTML篇):9、嵌入另一个页面的iframe元素
iframe元素通常用于在页面中嵌入另一个页面可以理解为在自己的页面里弄出一个区域,里面放置另一个页面iframe是可替换元素可替换元素:是指会被替换的元素。例如图片元素img等,书写img时没有在里门添加内容,而img元素把加载出来的图片作为内容。通常是行盒通常显示的内容取决于元素的属性css不能完成控制其中的样式具有行块盒的特点
- 神经网络初步学习3——数据与损失
X Y O
神经网络学习人工智能
一、传统机器学习与神经网络前言:该部分需要一定的机器学习与数学基础(很浅的基础),如果有不理解的地方可以自行查阅。(1)区别这里不妨以图像识别为例子:(1)在传统的机器学习视角中:我们需要人工手动去设置并提取我们的特征量,例如常见的SIFT、SURF和HOG等,随后需要我们选择合适的分类器(例如:SVM、KNN等分类器),接着把我们的参数训练出来。(2)而在神经网络的视角中:我们只需要把图片喂给它
- Softhub软件下载站实战开发(十七):用户端API设计
文章目录Softhub软件下载站实战开发(十七):用户端API设计前言用户端API概览1.分类管理API2.首页API3.资源集管理API4.软件管理API5.资源下载API⬇️API设计原则Softhub软件下载站实战开发(十七):用户端API设计前言在Softhub软件下载站的开发过程中,我们终于来到了用户端API的设计阶段!用户端API是整个系统与前端交互的核心桥梁,良好的API设计能极大
- AI驱动的个人工作革命:基于DeepSeek构建全场景智能工作助理(含源代码+多应用场景)
AI_DL_CODE
DeepSeek深度应用人工智能DeepSeek个人智能助理LangChain任务自动化知识管理大模型应用
摘要:本文详细阐述基于DeepSeek大模型构建个人工作助理的完整技术方案,通过LangChain实现任务分解、知识检索与工具调用的智能协同。方案融合向量数据库、多模态交互与个性化学习算法,构建涵盖邮件处理、会议管理、文档生成等15大核心工作场景的自动化系统。文中提供可运行代码、完整部署指南及效能测试数据,实现邮件处理效率提升13倍、会议纪要生成时间缩短100%、任务安排错误率降低83%的显著优化
- 【计算机网络】第三章:数据链路层(上)
iFulling
计算机网络笔记计算机网络网络网络协议笔记
本篇笔记课程来源:王道计算机考研计算机网络接下节:【计算机网络】第三章:数据链路层(下)【计算机网络】第三章:数据链路层(上)一、数据链路层的功能1.基本概念2.功能总览二、组帧(封装成帧)1.主要实现2.字符计数法3.字节填充法4.零比特填充法5.违规编码法三、差错控制1.主要实现2.检错编码Ⅰ.奇偶校验码Ⅱ.循环冗余校验码3.纠错编码Ⅰ.海明校验码四、流量控制、可靠传输1.相关机制Ⅰ.滑动窗口
- [特殊字符] AlphaGo:“神之一手”背后的智能革命与人机博弈新纪元
大千AI助手
人工智能Python#OTHER人工智能算法数据挖掘机器学习alphagogoogle围棋
从围棋棋盘到科学前沿的通用人工智能范式突破本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义与历史意义AlphaGo是由谷歌DeepMind团队开发的围棋人工智能程序,其里程碑意义在于:首破人类围棋壁垒:2016年以4:1击败世界冠军李世石九段,成为首个在完整对局中战胜人类顶尖棋手的AI。
- 隐马尔可夫模型(HMM):观测背后的状态解码艺术
大千AI助手
人工智能Python#OTHER数据挖掘人工智能机器学习算法HMM马尔科夫概率论
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心概念:双重随机过程隐马尔可夫模型(HiddenMarkovModel,HMM)是一种通过可观测序列推断隐含状态序列的概率图模型,包含两个核心随机过程:隐含状态链:不可观测的马尔可夫过程${q_t}$P(qt∣qt−1,qt−2,…,q1)=P(
- PageRank:互联网的马尔可夫链平衡态
大千AI助手
人工智能Python#OTHER人工智能机器学习条件概率贝叶斯PageRank马尔科夫链MC
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!PageRank算法本质上是一个在网页图上定义的离散时间马尔可夫链(DTMC),其核心思想是将网页间的链接关系转化为状态转移概率。以下是详细分析:一、马尔可夫链的核心要素在PageRank中的体现马尔可夫链要素PageRank对应数学描述状态空间网页集
- MCMC:高维概率采样的“随机游走”艺术
大千AI助手
人工智能Python#OTHER人工智能数据挖掘机器学习算法MCMC马尔科夫概率论
MCMC(马尔可夫链蒙特卡洛)是一种从复杂概率分布中高效采样的核心算法,它解决了传统采样方法在高维空间中的“维度灾难”问题。以下是其技术本质、关键算法及实践的深度解析:本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、MCMC要解决的核心问题目标:从目标分布(π(x)\pi(\mathbf{x})
- vivo Pulsar 万亿级消息处理实践(3)-KoP指标异常修复
作者:vivo互联网大数据团队-ChenJianbo本文是《vivoPulsar万亿级消息处理实践》系列文章第3篇。Pulsar是Apache基金会的开源分布式流处理平台和消息中间件,它实现了Kafka的协议,可以让使用KafkaAPI的应用直接迁移至Pulsar,这使得Pulsar在Kafka生态系统中更加容易被接受和使用。KoP提供了从Kafka到Pulsar的无缝转换,用户可以使用Kafka
- 【前端工程化】前端工作中如何协同管理开发任务?
前端
在企业级后台系统开发中,任务管理是保障团队协作效率、控制交付质量的核心环节。相比C端产品强调敏捷响应和快速迭代,B端更注重任务拆解的合理性、流程的可控性以及多人协作下的责任清晰。本文主要围绕需求拆解、任务分配、进度跟踪与闭环机制展开,适用于使用Git+PR流程+看板式工具的开发团队。一、任务管理目标职责明确每位成员清楚自己的任务范围与交付标准;避免多人重复处理同一功能模块;可视化进度使用看板或列表
- 量化价值投资中的深度学习技术:TensorFlow实战
量化价值投资中的深度学习技术:TensorFlow实战关键词:量化价值投资,深度学习,TensorFlow,股票预测,因子模型,LSTM神经网络,量化策略摘要:本文将带你走进"量化价值投资"与"深度学习"的交叉地带,用小学生都能听懂的语言解释复杂概念,再通过手把手的TensorFlow实战案例,教你如何用AI技术挖掘股票市场中的价值宝藏。我们会从传统价值投资的痛点出发,揭示深度学习如何像"超级分析
- OpenWebUI(8)源码学习-后端utils/telemetry追踪遥测模块
目录目录结构说明`constants.py`核心作用:主要功能:示例代码片段:`exporters.py`核心作用:主要类:`LazyBatchSpanProcessor`特点:技术亮点:`instrumentors.py`核心作用:插桩对象包括:钩子函数(Hooks):Instrumentor类:插桩流程:`setup.py`核心作用:主要功能:典型调用方式:✨总体架构与价值技术亮点总结✅开发建
- 116道网络安全面试真题(附答案),建议收藏!
程序员肉肉
web安全面试安全网络安全计算机程序员
116道网络安全面试真题(附答案),建议收藏!随着国家对网络安全的重视度,促使这个职业也变得炙手可热,越来越多的年轻人为进入安全领域在做准备。******数以百计的面试,为何迟迟无法顺利入职?********能力无疑是至关重要的,可却有不少能力不比已入职的同事差却应聘失败的人,那到底该如何做呢?为了帮助大家更快地拿到心仪Offer,我们给小伙伴们整理了一份**《网络安全工程师超高频面试真题》,结合
- 一个实例用全创建型模式-优化(冗余消除)
科学的发展-只不过是读大自然写的代码
#c++ubuntu开发java算法前端
1.关联链接上一篇:一个实例用全创建型模式-CSDN博客目录:《一个实例讲完23种设计模式》2.内容当前:单件+抽象工厂+创建者+工厂方法+优化需求:坦克大战创建两种坦克坦克类型射程速度b7070米时/70公里b5050米时/50公里设计说明1.抽象工厂承担了创建部件的任务2.创建者承担了将部件组装的任务3.工厂方法类相当于创建者模式的导演,但是他是并未给用户提供选择创建者的接口。而是通过自己的多
- 构建安全密码存储策略:核心原则与最佳实践
weixin_47233946
信息安全安全
密码是用户身份认证的第一道防线,其存储安全性直接关系到用户隐私和企业信誉。近年来频发的数据泄露事件揭示了密码管理的关键性。本文将深入探讨从加密算法到系统性防护的完整密码存储方案,帮助开发者构建企业级安全防御体系。一、密码存储基本准则绝对禁止明文存储:即使采用数据库加密措施,直接存储用户原始密码仍存在不可逆泄露风险。运维人员权限滥用或备份文件泄露都可能成为突破口。加密≠安全:AES等对称加密存在密钥
- 模型融合与人机协同:构建人机共生的智能未来
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍在科技日新月异的今天,人工智能(AI)已经成为了我们生活中不可或缺的一部分。从智能手机,到自动驾驶汽车,再到医疗诊断,AI的应用已经渗透到了我们生活的方方面面。然而,尽管AI的发展已经取得了显著的成就,但是我们仍然面临着一个重大的挑战:如何让AI系统更好地理解和适应人类的需求,以实现人机共生的智能未来。为了解决这个问题,越来越多的研究者开始探索模型融合和人机协同的方法。2.核心概念与联
- SpringAI Alibaba 正式版发布!四个问题让你彻底拿捏它
小付爱coding
人工智能
SpringAIAlibaba正式版发布!四个问题让你彻底拿捏它作者:XXX|发布时间:2025年4月最近,SpringAIAlibaba正式版重磅上线了!作为一个Java开发者,如果你还没听说过它,那你可能真的要掉队了。别急,今天我就用最通俗的方式带你搞懂这玩意儿到底是个啥、为啥要学它、学什么、能干啥!一、SpringAIAlibaba到底是个啥?一句话总结:SpringAIAlibaba是一个
- S7-300 400与S7-200 SMART PLC以太网通讯(S7协议)资源文件介绍
滑展妙Bernice
S7-300400与S7-200SMARTPLC以太网通讯(S7协议)资源文件介绍【下载地址】S7-300400与S7-200SMARTPLC以太网通讯S7协议资源文件介绍本资源文件详细解析了S7-300400与S7-200SMARTPLC通过以太网进行通讯的技术细节,涵盖硬件连接、软件配置及通讯调试等关键环节。通过学习,您将掌握S7协议在PLC通讯中的实际应用,提升自动化与电气工程领域的专业技能
- 让你的 AI 更聪明,这 7 个开源 MCP 项目不要错过
霍格沃兹测试开发学社
人工智能人工智能测试用例开发语言selenium驱动开发开源python
你还在用AI只是写写文档、改改代码?那你真的小看它了。现在,通过一套叫MCP(ModelControlPlane)的系统,AI不再只是“语言模型”,而是能直接操作网页、调用工具、自动化执行复杂任务的“智能助手”!今天整理了7个超实用的开源MCP项目,让你的AI立刻“开挂”。01|PagePublisherMCP:HTML页面一键上线还在发愁怎么把AI生成的HTML页部署上线?PagePublish
- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- Go - 项目收藏
1、谷歌官方维护了一个基于go语言的开源项目列表:https://github.com/golang/go/wiki/Projects2、[知乎网]有哪些值得学习的Go语言开源项目?3、[知乎用户:hackstoic]看过awesome-go项目,汇总了很多go开源项目。但是awesome-go收集了太全了,而且每个项目没有描述。因此我自己根据go语言中文社区提供的资料,还有互联网企业架构设计中的
- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 卷积神经网络架构的演进:从AlexNet到EfficientNet
t0_54manong
大数据与人工智能cnn架构人工智能个人开发
在过去的8.5年里,深度学习取得了飞速的进步。回溯到2012年,AlexNet在ImageNet上的Top-1准确率仅为63.3%,而如今,借助EfficientNet架构和师生训练法,我们已经能达到超过90%的准确率。本文将聚焦于卷积神经网络(CNN)架构的演变,深入探究其背后的基本原理。一些关键术语在深入了解各种架构之前,我们需要明确几个关键术语。更宽的网络意味着卷积层中有更多的特征图(滤波器
- 第二十八:Fiddler抓包-抓取Android7.0以上的Https包(三)-夜神模拟器+Xposed+JustTrustMe
卢卡平头哥
Fiddlerfiddlerhttpsandroid
一.简介1.二次加密:有的APP,在涉及到关键数据通信时,会将正文二次加密后才通过HTTPS发送1.1.抓包抓到的是一堆二进制base642.自带HTTPClient:像支付宝那样的变态,自己带一个基于so的HTTPClient库2.1.对于关键数据,都不走URLConnection和OkHttp,而是走自己的HTTPClient库2.2.甚至一些
- MacOS系统安装Docker(非常详细)从零基础入门到精通,看完这一篇就够了_mac安装docker
2501_90249219
dockereureka容器
选择默认配置就行,Docker会自动设置一些大多数开发人员必要的配置。这里我们跳过就好。运行Docker在应用程序中找到Docker程序图标,点击以启动Docker,启动之后我们会发现右上角工具栏中多了一个小鲸鱼的图片,这个就是Docker啦~真的好可爱~Docker桌面应用程序打开后,就是首页的学习中心界面。通过小鲸鱼中的AboutDockerDesktop可以查看Docker的版本可以看到版本
- 抓包工具fiddler详细使用教程
金丝猴也是猿
httpudphttpswebsocket网络安全网络协议tcp/ip
抓包工具的使用技巧与配置指南各位做测试的同学想必对抓包工具并不陌生,Fiddler是大家常用的工具之一,但除了Fiddler,还有一款功能强大的抓包工具——SniffMaster(抓包大师),它在某些场景下表现尤为出色。今天我们将结合Fiddler和SniffMaster的使用技巧,为大家提供一份全面的抓包配置指南。Web端抓包配置Fiddler的HTTPS配置打开Fiddler,进入Tools-
- Python 领域 pytest 的测试用例的可维护性设计
Python领域pytest的测试用例的可维护性设计关键词:pytest、测试用例、可维护性、测试框架、自动化测试、测试设计模式、重构摘要:本文深入探讨了如何在Python测试框架pytest中设计可维护的测试用例。我们将从测试用例可维护性的核心原则出发,分析pytest的特性和最佳实践,介绍多种提高测试代码可维护性的设计模式和技巧。文章包含实际代码示例、项目实战案例以及可维护性评估指标,帮助开发
- 【AI大模型】PyTorch Lightning 简化工具
我爱一条柴ya
学习AI记录人工智能pytorchpythonaiAI编程
PyTorchLightning是一个轻量级的PyTorch封装库,它通过抽象训练循环的工程细节,让研究人员可以专注于模型设计和实验。以下是PyTorchLightning的核心概念和实战指南。核心优势基础使用:三步搭建训练流程1.定义LightningModuleimporttorchimporttorch.nnasnnimportpytorch_lightningasplfromtorchme
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比