日撸代码300行:第63天(集成学习之 AdaBoosting-1)

 代码来自闵老师”日撸 Java 三百行(61-70天)

日撸 Java 三百行(61-70天,决策树与集成学习)_闵帆的博客-CSDN博客

学习过程中理解算法参考了:(十三)通俗易懂理解——Adaboost算法原理 - 知乎 (zhihu.com)

 今天的代码的核心是方法adjustWeights(boolean[] paraCorrectArray, double paraAlpha)。分类正确的实例,权重调整为原值除以Math.exp(paraAlpha);分类错误的调整为原值乘以Math.exp(paraAlpha)。

测试方法里,之所以for循环到tempCorrectArray长度的一半,仅仅是为了测试。相当于设置弱分类器分类正确了一半。

package machinelearning.adaboosting;

import java.io.FileReader;
import java.util.Arrays;

import weka.core.Instances;

/**
 * Weighted instances.
* * @author WX873 * */ public class WeightedInstances extends Instances{ /** * Just the requirement of some classes, any number is ok. */ private static final long serialVersionUID = 11087456L; /** * Weights */ private double[] weights; /** * ************************************************** * The first constructor. * * @param paraFileReader The given reader to read data from file. * @throws Exception * ************************************************** */ public WeightedInstances(FileReader paraFileReader) throws Exception{ // TODO Auto-generated constructor stub super(paraFileReader); setClassIndex(numAttributes() - 1); // Initialize weights weights = new double[numInstances()]; double tempAverage = 1.0/numInstances(); for (int i = 0; i < weights.length; i++) { weights[i] = tempAverage; }//of for i System.out.println("Instances weights are: " + Arrays.toString(weights)); }//of the first constructor /** * ********************************************************** * The second constructor. * * @param paraInstances * ********************************************************** */ public WeightedInstances(Instances paraInstances) { // TODO Auto-generated constructor stub super(paraInstances); setClassIndex(numAttributes() - 1); //Initialize weights weights = new double[numInstances()]; double tempAverage = 1.0/numInstances(); for (int i = 0; i < weights.length; i++) { weights[i] = tempAverage; }//of for i System.out.println("Instances weights are: " + Arrays.toString(weights)); }//of the second constructor /** * *************************************************** * Getter. * * @param paraIndex The given index. * @return The weight of the given index. * *************************************************** */ public double getWeight(int paraIndex) { return weights[paraIndex]; }//of getWeight /** * ***************************************************** * Adjust the weights. * * @param paraCorrectArray Indicate which instances have been correctly classified. * @param paraAlpha The weight of the last classifier. * ***************************************************** */ public void adjustWeights(boolean[] paraCorrectArray, double paraAlpha) { //Step 1. Calculate alpha. double tempIncrease = Math.exp(paraAlpha); //Step 2. Adjust. double tempWeightsSum = 0; // For normalization. for (int i = 0; i < weights.length; i++) { if (paraCorrectArray[i]) { weights[i] /= tempIncrease; } else { weights[i] *= tempIncrease; }//of if tempWeightsSum += weights[i]; }//of for i // Step 3. Normalize. for (int i = 0; i < weights.length; i++) { weights[i] /= tempWeightsSum; }//of for i System.out.println("After adjusting, instances weights are: " + Arrays.toString(weights)); }//of adjustWeights /** * ********************************************* * Test the method. * ********************************************* */ public void adjustWeightsTest() { boolean[] tempCorrectArray = new boolean[numInstances()]; for (int i = 0; i < tempCorrectArray.length / 2; i++) { //仅仅是测试adjustWeights()方法,因为还没有分类器,设置分类正确了一半 tempCorrectArray[i] = true; }//of for i double tempWeightedError = 0.3; adjustWeights(tempCorrectArray, tempWeightedError); //仅仅是测试adjustWeights()方法,因为还没有分类器 System.out.println("After adjusting"); System.out.println(toString()); }//of adjustWeightsTest /** * ******************************************************** * For display. * ******************************************************** */ public String toString() { String resultString = "I am a weighted Instances object.\r\n" + "I have " + numInstances() + " instances and " + (numAttributes() - 1) + " conditional attributes.\r\n" + "My weights are: " + Arrays.toString(weights) + "\r\n" + "My data are: \r\n" + super.toString(); return resultString; }//of toString /** * *********************************************************** * The entrance of the program. * * @param args * *********************************************************** */ public static void main(String args[]) { WeightedInstances tempWeightedInstances = null; String tempFilename = "E:/Datasets/UCIdatasets/其他数据集/iris.arff"; try { FileReader tempFileReader = new FileReader(tempFilename); tempWeightedInstances = new WeightedInstances(tempFileReader); tempFileReader.close(); } catch (Exception exception1) { // TODO: handle exception System.out.println("Cannot read the file: " + tempFilename + "\r\n" + exception1); System.exit(0); }//of try System.out.println(tempWeightedInstances.toString()); tempWeightedInstances.adjustWeightsTest(); }//of main }//of WeightedInstances

你可能感兴趣的:(集成学习,机器学习)