Python中numpy的基本使用

**

使用环境是jupyter,in是执行的语句,out是执行后输出的结果

**

In [1]:

# 安装:pip install numpy
# ndarray结构要求数据类型一致,不一致就会自动向下转换
import numpy as np

In [2]:

# 输出帮助信息
print(help(np.info(np.add)))

In [3]:

# 将列表数据变成numpy类型
array = np.array([1,2,3,4])
array

Out[3]:

array([1, 2, 3, 4])

In [4]:

# 查看类型
type(array)

Out[4]:

numpy.ndarray

In [5]:

# 根据索引值获取
array[1]

Out[5]:

2

In [6]:

# 获取值,切片的时候前闭后开,所以会获取下标为1,2的值
array[1:3]

Out[6]:

array([2, 3])

In [7]:

# 负数表示从后往前数
array[0:-2]

Out[7]:

array([1, 2])

In [8]:

# 给数组中每一个数加1
array += 1
array

Out[8]:

array([2, 3, 4, 5])

In [9]:

array1 = array + 1
array1

Out[9]:

array([3, 4, 5, 6])

In [10]:

array + array1

Out[10]:

array([ 5,  7,  9, 11])

In [11]:

array * array1

Out[11]:

array([ 6, 12, 20, 30])

In [12]:

# 查看数据形状
array.shape

Out[12]:

(4,)

In [13]:

# 查看数据类型
array.dtype

Out[13]:

dtype('int32')

In [14]:

# 元素占几个字节
array.itemsize

Out[14]:

4

In [15]:

# 查看数据的个数
array.size

Out[15]:

4

In [16]:

# 维度
array.ndim

Out[16]:

1

In [17]:

# 填充,参数表示用哪个数字进行填充
array.fill(0)
array

Out[17]:

array([0, 0, 0, 0])

In [18]:

# 将列表数据变成numpy类型
array2 = np.array([[1,2,3],[4,5,6],[7,8,9]])
array2

Out[18]:

array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

In [19]:

array2.shape

Out[19]:

(3, 3)

In [20]:

array2.size

Out[20]:

9

In [21]:

array2.ndim

Out[21]:

2

In [22]:

array2[1,1]

Out[22]:

5

In [23]:

array2[1,1] = 10
array2

Out[23]:

array([[ 1,  2,  3],
       [ 4, 10,  6],
       [ 7,  8,  9]])

In [24]:

# 获取第2行的数据
array2[1]

Out[24]:

array([ 4, 10,  6])

In [25]:

# 第一个参数表示全部的行,第二个参数表示第2列,即第2列的全部数据
array2[:,1]

Out[25]:

array([ 2, 10,  8])

In [26]:

# 第一个参数表示第1行,第二个参数表示第1,2列
array2[0,1:3]

Out[26]:

array([2, 3])

In [27]:

# 复制数据,这2个变量指向同一个值,一个变量修改了值,另外一个变量查看的时候值也会变
array3 = array2
array3

Out[27]:

array([[ 1,  2,  3],
       [ 4, 10,  6],
       [ 7,  8,  9]])

In [28]:

array3[1,1] = 100
array3

Out[28]:

array([[  1,   2,   3],
       [  4, 100,   6],
       [  7,   8,   9]])

In [29]:

array2

Out[29]:

array([[  1,   2,   3],
       [  4, 100,   6],
       [  7,   8,   9]])

In [30]:

# 复制数据,2个变量之间的值互不影响
array3 = array2.copy()
array3

Out[30]:

array([[  1,   2,   3],
       [  4, 100,   6],
       [  7,   8,   9]])

In [31]:

array3[1,1] = 1000
array3

Out[31]:

array([[   1,    2,    3],
       [   4, 1000,    6],
       [   7,    8,    9]])

In [32]:

array2

Out[32]:

array([[  1,   2,   3],
       [  4, 100,   6],
       [  7,   8,   9]])

In [33]:

# 生成一维数据,在[0,100)中,每隔10个选取一个
a = np.arange(0,100,10)
a

Out[33]:

array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])

In [34]:

m = np.array([0,2,0,0,1,5,0,0,7,0],dtype = bool)
m

Out[34]:

array([False,  True, False, False,  True,  True, False, False,  True,
       False])

In [35]:

# 下标是False表示不显示这个值,True表示显示这个值
a[m]

Out[35]:

array([10, 40, 50, 80])

In [36]:

# 参数10表示生成10个数
r = np.random.rand(10)
r

Out[36]:

array([0.73174095, 0.25660127, 0.14302333, 0.19748141, 0.91501771,
       0.0737786 , 0.42826993, 0.85637025, 0.9121782 , 0.150054  ])

In [37]:

m = r >0.5
m

Out[37]:

array([ True, False, False, False,  True, False, False,  True,  True,
       False])

In [38]:

r[m]

Out[38]:

array([0.73174095, 0.91501771, 0.85637025, 0.9121782 ])

In [39]:

# 找到r中大于0.5的下标
np.where(r > 0.5)

Out[39]:

(array([0, 4, 7, 8], dtype=int64),)

In [40]:

r[np.where(r > 0.5)]

Out[40]:

array([0.73174095, 0.91501771, 0.85637025, 0.9121782 ])

In [41]:

a = np.array([1,2,3],dtype = np.float32)
a

Out[41]:

array([1., 2., 3.], dtype=float32)

In [42]:

# 数据的个数
a.size

Out[42]:

3

In [43]:

# 每个元素的字节
a.itemsize

Out[43]:

4

In [44]:

# 所有元素的总字节
a.nbytes

Out[44]:

12

In [45]:

a = np.array([1,2.5,'str'],dtype = np.object)
a
c:\users\一\appdata\local\programs\python\python37\lib\site-packages\ipykernel_launcher.py:1: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. 
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
  """Entry point for launching an IPython kernel.

Out[45]:

array([1, 2.5, 'str'], dtype=object)

In [46]:

a = np.array([1,2,3,4])
a

Out[46]:

array([1, 2, 3, 4])

In [47]:

np.asarray(a,dtype = np.float32)

Out[47]:

array([1., 2., 3., 4.], dtype=float32)

In [48]:

a

Out[48]:

array([1, 2, 3, 4])

In [49]:

a2 = np.asarray(a,dtype = np.float32)
a2

Out[49]:

array([1., 2., 3., 4.], dtype=float32)

In [50]:

a

Out[50]:

array([1, 2, 3, 4])

In [51]:

a.astype(np.float32)

Out[51]:

array([1., 2., 3., 4.], dtype=float32)

In [52]:

a

Out[52]:

array([1, 2, 3, 4])

In [53]:

array2 = np.array([[1,2,3],[4,5,6]])
array2

Out[53]:

array([[1, 2, 3],
       [4, 5, 6]])

In [54]:

# 求和
array2.sum()

Out[54]:

21

In [55]:

np.sum(array2)

Out[55]:

21

In [56]:

# 按维度求和,负数表示从后面维度开始数
np.sum(array2,axis=0)

Out[56]:

array([5, 7, 9])

In [57]:

np.sum(array2,axis=1)

Out[57]:

array([ 6, 15])

In [58]:

np.sum(array2,axis=-1)

Out[58]:

array([ 6, 15])

In [59]:

array2.sum(axis=0)

Out[59]:

array([5, 7, 9])

In [60]:

# 所有数相乘
array2.prod()

Out[60]:

720

In [61]:

# 按维度相乘
array2.prod(axis=1)

Out[61]:

array([  6, 120])

In [62]:

# 找到最小值
array2.min()

Out[62]:

1

In [63]:

# 找到最大值
array2.max()

Out[63]:

6

In [64]:

# 按维度寻找
array2.max(axis=1)

Out[64]:

array([3, 6])

In [65]:

# 索引位置
array2.argmin()

Out[65]:

0

In [66]:

array2.argmax()

Out[66]:

5

In [67]:

array2.argmin(axis=0)

Out[67]:

array([0, 0, 0], dtype=int64)

In [68]:

array2.argmax(axis=1)

Out[68]:

array([2, 2], dtype=int64)

In [69]:

# 平均值
array2.mean()

Out[69]:

3.5

In [70]:

array2.mean(axis=1)

Out[70]:

array([2., 5.])

In [71]:

# 标准差
array2.std()

Out[71]:

1.707825127659933

In [72]:

# 标准差
array2.std(axis=1)

Out[72]:

array([0.81649658, 0.81649658])

In [73]:

# 方差
array2.var()

Out[73]:

2.9166666666666665

In [74]:

array2.var(axis=1)

Out[74]:

array([0.66666667, 0.66666667])

In [75]:

array2

Out[75]:

array([[1, 2, 3],
       [4, 5, 6]])

In [76]:

# 小于2的值都变成2,大于4的值都变成4
array2.clip(2,4)

Out[76]:

array([[2, 2, 3],
       [4, 4, 4]])

In [77]:

a = np.array([[1.1,2.258,3.3],[4.4,5.5,6.672]])
a

Out[77]:

array([[1.1  , 2.258, 3.3  ],
       [4.4  , 5.5  , 6.672]])

In [78]:

# 四舍五入
a.round()

Out[78]:

array([[1., 2., 3.],
       [4., 6., 7.]])

In [79]:

# 设置精度
a.round(decimals=1)

Out[79]:

array([[1.1, 2.3, 3.3],
       [4.4, 5.5, 6.7]])

In [80]:

a = np.array([[2,1,4],[1,9,6]])
a

Out[80]:

array([[2, 1, 4],
       [1, 9, 6]])

In [81]:

# 排序
np.sort(a)

Out[81]:

array([[1, 2, 4],
       [1, 6, 9]])

In [82]:

# 按维度排序
np.sort(a,axis=0)

Out[82]:

array([[1, 1, 4],
       [2, 9, 6]])

In [83]:

# 返回原来的索引值
np.argsort(a)

Out[83]:

array([[1, 0, 2],
       [0, 2, 1]], dtype=int64)

In [84]:

# 等分取值
a = np.linspace(0,10,10)
a

Out[84]:

array([ 0.        ,  1.11111111,  2.22222222,  3.33333333,  4.44444444,
        5.55555556,  6.66666667,  7.77777778,  8.88888889, 10.        ])

In [85]:

v = np.array([3,6,9])
# 排序好的数组才可以使用
np.searchsorted(a,v)

Out[85]:

array([3, 6, 9], dtype=int64)

In [86]:

a = np.array([[3,6,1],[5,7,6],[2,9,4]])
a

Out[86]:

array([[3, 6, 1],
       [5, 7, 6],
       [2, 9, 4]])

In [87]:

# 第一列降序,第三列升序
i = np.lexsort([-1*a[:,0],a[:,2]])
i

Out[87]:

array([0, 2, 1], dtype=int64)

In [88]:

a[i]

Out[88]:

array([[3, 6, 1],
       [2, 9, 4],
       [5, 7, 6]])

In [89]:

a = np.arange(10)
a

Out[89]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [90]:

a.shape

Out[90]:

(10,)

In [91]:

# 修改数据形状
a.shape = 2,5

In [92]:

a

Out[92]:

array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9]])

In [93]:

a.reshape(1,10)

Out[93]:

array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])

In [94]:

a = np.arange(10)
a

Out[94]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [95]:

a.shape

Out[95]:

(10,)

In [96]:

a = a[np.newaxis,:]
a.shape

Out[96]:

(1, 10)

In [97]:

a = np.arange(10)
a

Out[97]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [98]:

a.shape

Out[98]:

(10,)

In [99]:

a = a[:,np.newaxis]
a.shape

Out[99]:

(10, 1)

In [100]:

a = a[:,np.newaxis,np.newaxis]
a.shape

Out[100]:

(10, 1, 1, 1)

In [101]:

# 压缩数据形状
a = a.squeeze()
a.shape

Out[101]:

(10,)

In [102]:

a.shape = 2,5
a

Out[102]:

array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9]])

In [103]:

# 转制
a.transpose()

Out[103]:

array([[0, 5],
       [1, 6],
       [2, 7],
       [3, 8],
       [4, 9]])

In [104]:

a = np.arange(10)
a

Out[104]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [105]:

a.shape = 2,5
a

Out[105]:

array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9]])

In [106]:

# 转置,不会改变原来数据形状
a.T

Out[106]:

array([[0, 5],
       [1, 6],
       [2, 7],
       [3, 8],
       [4, 9]])

In [107]:

a

Out[107]:

array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9]])

In [108]:

a = np.array([[1,2,3,2],[4,5,4,6],[7,8,4,9]])
a

Out[108]:

array([[1, 2, 3, 2],
       [4, 5, 4, 6],
       [7, 8, 4, 9]])

In [109]:

b = np.array([[1,12,13,2],[45,5,44,6],[17,8,4,9]])
b

Out[109]:

array([[ 1, 12, 13,  2],
       [45,  5, 44,  6],
       [17,  8,  4,  9]])

In [110]:

# 拼接数据
c = np.concatenate((a,b))
c

Out[110]:

array([[ 1,  2,  3,  2],
       [ 4,  5,  4,  6],
       [ 7,  8,  4,  9],
       [ 1, 12, 13,  2],
       [45,  5, 44,  6],
       [17,  8,  4,  9]])

In [111]:

# 拼接数据,指定在哪个维度
c = np.concatenate((a,b),axis=1)
c

Out[111]:

array([[ 1,  2,  3,  2,  1, 12, 13,  2],
       [ 4,  5,  4,  6, 45,  5, 44,  6],
       [ 7,  8,  4,  9, 17,  8,  4,  9]])

In [112]:

np.vstack((a,b))

Out[112]:

array([[ 1,  2,  3,  2],
       [ 4,  5,  4,  6],
       [ 7,  8,  4,  9],
       [ 1, 12, 13,  2],
       [45,  5, 44,  6],
       [17,  8,  4,  9]])

In [113]:

np.hstack((a,b))

Out[113]:

array([[ 1,  2,  3,  2,  1, 12, 13,  2],
       [ 4,  5,  4,  6, 45,  5, 44,  6],
       [ 7,  8,  4,  9, 17,  8,  4,  9]])

In [114]:

a

Out[114]:

array([[1, 2, 3, 2],
       [4, 5, 4, 6],
       [7, 8, 4, 9]])

In [115]:

# 数据变成一维的,不会改变原数据
a.flatten()

Out[115]:

array([1, 2, 3, 2, 4, 5, 4, 6, 7, 8, 4, 9])

In [116]:

a

Out[116]:

array([[1, 2, 3, 2],
       [4, 5, 4, 6],
       [7, 8, 4, 9]])

In [117]:

# 数据变成一维的
a.ravel()

Out[117]:

array([1, 2, 3, 2, 4, 5, 4, 6, 7, 8, 4, 9])

In [118]:

# 获取10个数
np.arange(10)

Out[118]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [119]:

# 在[3,10)上每隔2个显示一个
np.arange(3,10,2)

Out[119]:

array([3, 5, 7, 9])

In [120]:

# 同时设置数据类型
np.arange(3,10,2,dtype=np.float32)

Out[120]:

array([3., 5., 7., 9.], dtype=float32)

In [121]:

# 等分显示数据
np.linspace(1,20,5)

Out[121]:

array([ 1.  ,  5.75, 10.5 , 15.25, 20.  ])

In [122]:

# 以10为底
np.logspace(0,1,5)

Out[122]:

array([ 1.        ,  1.77827941,  3.16227766,  5.62341325, 10.        ])

In [123]:

x = np.linspace(-10,10,5)
x

Out[123]:

array([-10.,  -5.,   0.,   5.,  10.])

In [124]:

y = np.linspace(-10,10,5)
y

Out[124]:

array([-10.,  -5.,   0.,   5.,  10.])

In [125]:

# 网格显示
x,y = np.meshgrid(x,y)

In [126]:

x

Out[126]:

array([[-10.,  -5.,   0.,   5.,  10.],
       [-10.,  -5.,   0.,   5.,  10.],
       [-10.,  -5.,   0.,   5.,  10.],
       [-10.,  -5.,   0.,   5.,  10.],
       [-10.,  -5.,   0.,   5.,  10.]])

In [127]:

y

Out[127]:

array([[-10., -10., -10., -10., -10.],
       [ -5.,  -5.,  -5.,  -5.,  -5.],
       [  0.,   0.,   0.,   0.,   0.],
       [  5.,   5.,   5.,   5.,   5.],
       [ 10.,  10.,  10.,  10.,  10.]])

In [128]:

# 按行
np.r_[1:4:1]

Out[128]:

array([1, 2, 3])

In [129]:

# 按列
np.c_[1:8:2]

Out[129]:

array([[1],
       [3],
       [5],
       [7]])

In [130]:

# 构建全0的
np.zeros(4)

Out[130]:

array([0., 0., 0., 0.])

In [131]:

np.zeros((3,4))

Out[131]:

array([[0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.]])

In [132]:

# 构建全1的
np.ones((2,3))

Out[132]:

array([[1., 1., 1.],
       [1., 1., 1.]])

In [133]:

np.ones((2,3)) *5

Out[133]:

array([[5., 5., 5.],
       [5., 5., 5.]])

In [134]:

np.ones((2,3),dtype=np.int32)

Out[134]:

array([[1, 1, 1],
       [1, 1, 1]])

In [135]:

# 构建空的,会随机填充一些东西
a = np.empty(5)
a

Out[135]:

array([-10.,  -5.,   0.,   5.,  10.])

In [136]:

# 用3填充
a.fill(3)
a

Out[136]:

array([3., 3., 3., 3., 3.])

In [137]:

a = np.array([1,2,3,4])
a

Out[137]:

array([1, 2, 3, 4])

In [138]:

# 根据某个数据来构建给他形状一样的东西
np.zeros_like(a)

Out[138]:

array([0, 0, 0, 0])

In [139]:

np.ones_like(a)

Out[139]:

array([1, 1, 1, 1])

In [140]:

# 单位矩阵
np.identity(4)

Out[140]:

array([[1., 0., 0., 0.],
       [0., 1., 0., 0.],
       [0., 0., 1., 0.],
       [0., 0., 0., 1.]])

In [141]:

x = np.array([5,5])
y = np.array([2,2])

In [142]:

x.shape

Out[142]:

(2,)

In [143]:

y.shape

Out[143]:

(2,)

In [144]:

# 向量乘法
np.multiply(x,y)

Out[144]:

array([10, 10])

In [145]:

# 矩阵乘法
np.dot(x,y)

Out[145]:

20

In [146]:

x.shape = 2,1

In [147]:

x

Out[147]:

array([[5],
       [5]])

In [148]:

# 形状不一样不能
np.dot(x,y)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_16616\1585282532.py in 
      1 # 形状不一样不能
----> 2 np.dot(x,y)

<__array_function__ internals> in dot(*args, **kwargs)

ValueError: shapes (2,1) and (2,) not aligned: 1 (dim 1) != 2 (dim 0)

In [149]:

x

Out[149]:

array([[5],
       [5]])

In [150]:

y.shape = 1,2

In [151]:

y

Out[151]:

array([[2, 2]])

In [152]:

print(x.shape)
print(y.shape)
(2, 1)
(1, 2)

In [153]:

np.dot(x,y)

Out[153]:

array([[10, 10],
       [10, 10]])

In [154]:

np.dot(y,x)

Out[154]:

array([[20]])

In [155]:

# 默认会自动补全
x = np.array([1,1,1,1])
y = np.array([[1,2,3,4],[8,9,5,6]])
x * y

Out[155]:

array([[1, 2, 3, 4],
       [8, 9, 5, 6]])

In [156]:

x = np.array([1,1,1,1])
y = np.array([1,2,3,4])
x == y

Out[156]:

array([ True, False, False, False])

In [157]:

x = np.array([1,1,1])
y = np.array([1,2,3,4])
x == y
c:\users\一\appdata\local\programs\python\python37\lib\site-packages\ipykernel_launcher.py:3: DeprecationWarning: elementwise comparison failed; this will raise an error in the future.
  This is separate from the ipykernel package so we can avoid doing imports until

Out[157]:

False

In [158]:

x = np.array([1,1,0])
y = np.array([1,2,3])
np.logical_and(x,y)

Out[158]:

array([ True,  True, False])

In [159]:

np.logical_or(x,y)

Out[159]:

array([ True,  True,  True])

In [160]:

np.logical_not(x,y)

Out[160]:

array([0, 0, 1])

In [161]:

# 3行2列的随机数
np.random.rand(3,2)

Out[161]:

array([[0.60028871, 0.51878556],
       [0.01137581, 0.57996631],
       [0.89317575, 0.42156693]])

In [162]:

# 产生一个随机数
np.random.rand()

Out[162]:

0.9120995891601261

In [163]:

np.random.random_sample()

Out[163]:

0.23406011017882655

In [164]:

# 产生10以下的2行3列的数据
np.random.randint(10,size = (2,3))

Out[164]:

array([[0, 1, 1],
       [2, 8, 5]])

In [165]:

# 产生一个随机整数
np.random.randint(10)

Out[165]:

3

In [166]:

# 在0-10产生4个随机数
np.random.randint(0,10,4)

Out[166]:

array([7, 3, 8, 9])

In [167]:

# 均值,方差  高斯分布
m,s = 0,0.2
np.random.normal(m,s,5)

Out[167]:

array([-0.25670771,  0.14098329, -0.02476364, -0.29993815, -0.01253749])

In [168]:

# 设置输出的精度
np.set_printoptions(precision = 2)
# 均值,方差  高斯分布
m,s = 0,0.2
np.random.normal(m,s,5)

Out[168]:

array([-0.19,  0.03,  0.08,  0.37,  0.19])

In [169]:

a = np.arange(10)
a

Out[169]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [170]:

# 打乱数据
np.random.shuffle(a)
a

Out[170]:

array([9, 7, 5, 1, 0, 8, 4, 6, 2, 3])

In [171]:

# 随机种子,设置之后执行产生的随机数都一样,不会变化
# 用在对比实验中,观察某一参数的时候,需要保证其他的数据(包括随机数)都是不变的
np.random.seed(5)
m,s = 0,0.2
np.random.normal(m,s,5)

Out[171]:

array([ 0.09, -0.07,  0.49, -0.05,  0.02])

In [172]:

# 创建文件,把下面的数据加进去
%%writefile a.txt
1 2 3 4 5 6
7 8 9 2 3 1
  File "C:\Users\一\AppData\Local\Temp\ipykernel_16616\1079126928.py", line 3
    1 2 3 4 5 6
      ^
SyntaxError: invalid syntax

In [173]:

# 读取数据
data = []
with open('a.txt') as f:
    for line in f:
        fileds = line.split()
        c_data = [float(x) for x in fileds]
        data.append(c_data)
data = np.array(data)
data

Out[173]:

array([[1., 2., 3., 4., 5., 6.],
       [7., 8., 9., 2., 3., 1.]])

In [174]:

# 读取数据
data = np.loadtxt('a.txt')
data

Out[174]:

array([[1., 2., 3., 4., 5., 6.],
       [7., 8., 9., 2., 3., 1.]])

In [175]:

%%writefile b.txt
1,2,3,4,5,6
7,8,9,2,3,1
Overwriting b.txt

In [176]:

# 读取数据,指定分隔符,默认是以空格为分隔符
data = np.loadtxt('b.txt',delimiter = ',')
data

Out[176]:

array([[1., 2., 3., 4., 5., 6.],
       [7., 8., 9., 2., 3., 1.]])

In [177]:

%%writefile c.txt
a,b,c,d,e,f
1,2,3,4,5,6
7,8,9,2,3,1
Overwriting c.txt

In [178]:

# 跳过某些行
data = np.loadtxt('c.txt',delimiter = ',',skiprows = 1)
data

Out[178]:

array([[1., 2., 3., 4., 5., 6.],
       [7., 8., 9., 2., 3., 1.]])

In [179]:

# 指定输出的列
data = np.loadtxt('c.txt',delimiter = ',',skiprows = 1,usecols = (1,3,5))
data

Out[179]:

array([[2., 4., 6.],
       [8., 2., 1.]])

In [180]:

# 保存数据
a = np.array([[1,2,3],[4,5,6]])
np.savetxt('d.txt',a,fmt='%d',delimiter=',')

In [181]:

# 保留2位小数进行保存
a = np.array([[1,2,3],[4,5,6]])
np.savetxt('d.txt',a,fmt='%.2f',delimiter=',')

In [182]:

# 读写array结构
a = np.array([[1,2,3],[4,5,6]])
np.save('a.npy',a)

In [183]:

# 读取数据
a = np.load('a.npy')
a

Out[183]:

array([[1, 2, 3],
       [4, 5, 6]])

In [184]:

b = np.arange(10)
b

Out[184]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [185]:

# 保存为压缩文件
np.savez('a.npz',a=a,b=b)

In [186]:

data = np.load('a.npz')

In [187]:

# 输出关键字
[i for i in data.keys()]

Out[187]:

['a', 'b']

In [188]:

# 根据关键字获取值
data['a']

Out[188]:

array([[1, 2, 3],
       [4, 5, 6]])

In [189]:

data['b']

Out[189]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [190]:

a = np.arange(10,20)
a

Out[190]:

array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19])

In [191]:

# 逆序
a = a[::-1]
a

Out[191]:

array([19, 18, 17, 16, 15, 14, 13, 12, 11, 10])

In [192]:

# 值不为0的索引
a = np.array([1,2,0,5,0,8,0])
np.nonzero(a)

Out[192]:

(array([0, 1, 3, 5], dtype=int64),)

In [193]:

a = np.ones((4,4))
a

Out[193]:

array([[1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.]])

In [194]:

# 在外圈填充0
a = np.pad(a,pad_width=1,mode='constant',constant_values=0)
a

Out[194]:

array([[0., 0., 0., 0., 0., 0.],
       [0., 1., 1., 1., 1., 0.],
       [0., 1., 1., 1., 1., 0.],
       [0., 1., 1., 1., 1., 0.],
       [0., 1., 1., 1., 1., 0.],
       [0., 0., 0., 0., 0., 0.]])

In [195]:

# 找到shape(6,7,8)为,找到第100个元素的的索引值
np.unravel_index(100,(6,7,8))

Out[195]:

(1, 5, 4)

In [196]:

# 输入都有的数
a = np.random.randint(0,10,10)
b = np.random.randint(0,10,10)
print(a)
print(b)
print(np.intersect1d(a,b))   # 数字1d,不是字母l
[7 1 5 7 0 1 4 6 2 9]
[9 9 9 1 2 7 0 5 0 0]
[0 1 2 5 7 9]

In [197]:

# 日期
y = np.datetime64('today','D') - np.timedelta64(1,'D')
n = np.datetime64('today','D')
t = np.datetime64('today','D') + np.timedelta64(1,'D')
print(y)
print(n)
print(t)
2022-12-16
2022-12-17
2022-12-18

In [198]:

# 一定范围的日期
np.arange('2022-11','2022-12',dtype='datetime64[D]')

Out[198]:

array(['2022-11-01', '2022-11-02', '2022-11-03', '2022-11-04',
       '2022-11-05', '2022-11-06', '2022-11-07', '2022-11-08',
       '2022-11-09', '2022-11-10', '2022-11-11', '2022-11-12',
       '2022-11-13', '2022-11-14', '2022-11-15', '2022-11-16',
       '2022-11-17', '2022-11-18', '2022-11-19', '2022-11-20',
       '2022-11-21', '2022-11-22', '2022-11-23', '2022-11-24',
       '2022-11-25', '2022-11-26', '2022-11-27', '2022-11-28',
       '2022-11-29', '2022-11-30'], dtype='datetime64[D]')

In [199]:

a = np.random.uniform(0,10,10)
a

Out[199]:

array([1.44, 1.66, 9.64, 9.6 , 1.88, 0.24, 2.05, 7.  , 7.8 , 0.23])

In [200]:

# 向下取整
np.floor(a)

Out[200]:

array([1., 1., 9., 9., 1., 0., 2., 6., 7., 0.])

In [201]:

# 设置只读
a = np.array([1,2,3])
a.flags.writeable = False
a[0]=5
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_16616\4169285836.py in 
      2 a = np.array([1,2,3])
      3 a.flags.writeable = False
----> 4 a[0]=5

ValueError: assignment destination is read-only

In [202]:

# 修改类型
a = np.array([1,2,3])
print(a.dtype)
a = a.astype(np.float32)
print(a.dtype)
int32
float32

In [203]:

# 索引和值
a = np.arange(9).reshape(3,3)
for i,v in np.ndenumerate(a):
    print(i,v)
(0, 0) 0
(0, 1) 1
(0, 2) 2
(1, 0) 3
(1, 1) 4
(1, 2) 5
(2, 0) 6
(2, 1) 7
(2, 2) 8

In [204]:

# 按某一列进行排序
a = np.random.randint(0,10,(3,3))
print(a)
print(a[a[:,1].argsort()])
[[3 1 7]
 [3 1 9]
 [5 7 0]]
[[3 1 7]
 [3 1 9]
 [5 7 0]]

In [205]:

# 数字出现的个数,[0出现的个数,1出现的个数...]
a = np.array([1,2,1,2,5,4,3,8])
np.bincount(a)

Out[205]:

array([0, 2, 2, 1, 1, 1, 0, 0, 1], dtype=int64)

In [206]:

a = np.random.randint(0,10,(4,4,4,4))
r = a.sum(axis=(-2,-1))
print(r)
[[71 75 56 89]
 [52 76 48 78]
 [66 89 69 59]
 [94 83 56 72]]

In [207]:

a = np.arange(25).reshape(5,5)
print(a)
a[[0,1]]=a[[1,0]]
print(a)
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
[[ 5  6  7  8  9]
 [ 0  1  2  3  4]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]

In [208]:

# 查找最大的数,速度较快
a = np.arange(10000)
np.random.shuffle(a)
n = 5
print(a[np.argpartition(-a,n)[:n]])
[9998 9997 9996 9995 9999]

In [209]:

a = np.array([1,2,4])
b = np.array([1,2,3])
np.all(a == b)

Out[209]:

False

In [210]:

np.any(a == b)

Out[210]:

True

In [211]:

a = np.random.randint(0,2,(5,3))
a

Out[211]:

array([[0, 0, 1],
       [1, 1, 1],
       [1, 0, 1],
       [1, 1, 1],
       [1, 0, 1]])

In [212]:

np.all(a[:,1:] == a[:,:-1],axis = 1)

Out[212]:

array([False,  True, False,  True, False])

你可能感兴趣的:(Python数据可视化,numpy,python)