- SQLite 数据库在大数据分析中的应用潜力
数据库管理艺术
数据库sqlite数据分析ai
SQLite数据库在大数据分析中的应用潜力关键词:SQLite、大数据分析、轻量级数据库、嵌入式数据库、数据仓库、OLAP、性能优化摘要:本文深入探讨了SQLite这一轻量级嵌入式数据库在大数据分析领域的应用潜力。我们将从SQLite的核心架构出发,分析其在大数据场景下的优势和限制,并通过实际案例展示如何通过优化策略和扩展技术使SQLite能够处理大规模数据集。文章包含性能对比测试、优化技巧和实际
- SnowConvert:自动化数据迁移的技术解析与最佳实践
weixin_30777913
迁移学习数据库运维
SnowConvert是Snowflake生态系统的关键迁移工具,专为将传统数据仓库(如Oracle、Teradata、SQLServer等)的代码资产高效、准确地转换为Snowflake原生语法而设计。以下基于官方文档对其技术原理、工作流程及最佳实践进行深入分析:一、SnowConvert核心技术解析精准的语法映射引擎语言支持:深度解析源系统特有语法(OraclePL/SQL,TeradataB
- 实时数仓工具-SelectDB
清平乐的技术博客
实时数仓数据仓库
一、SelectDB简介官网:https://www.selectdb.com/1、ApacheDorisApacheDoris是一款采用MPP架构的实时分布式OLAP数据仓库,专注于高效的实时数据分析。Doris项目于2013年内部开发,2017年正式开源,目前在GitHub上获得了接近13,000星,全球已有超过5,000家企业采用,社区活跃度极高,累计贡献者超过650人,且曾连续数月在大数据
- 解锁 AnalyticDB for PostgreSQL 的潜力:从数据仓库到矢量数据库
aehrutktrjk
数据库postgresql数据仓库python
引言在大数据时代,快速分析大量数据已成为企业竞争的关键。AnalyticDBforPostgreSQL是阿里云提供的一个强大的并行处理数据仓库服务,适用于在线分析海量数据。本文将探讨其基本功能及在矢量数据库中的应用,包括如何与Langchain进行集成。主要内容AnalyticDBforPostgreSQL的核心功能大规模并行处理(MPP):允许高效地处理和分析大量数据。兼容性:支持ANSISQL
- 针对数据仓库方向的大数据算法工程师面试经验总结
巴基海贼王
数据仓库大数据算法
⚙️一、技术核心考察点数据建模能力星型vs雪花模型:面试官常要求对比两种模型。星型模型(事实表+冗余维度表)查询性能高但存储冗余;雪花模型(规范化维度表)减少冗余但增加JOIN复杂度。需结合场景选择,如实时分析首选星型。建模实战题:例如设计电商销售数仓,需明确事实表(订单流水)、维度表(商品、用户、时间),并解释粒度选择(如订单级)。ETL流程与优化增量抽取方案:面试高频题。需掌握基于时间戳、CD
- 解锁阿里云AnalyticDB:数据仓库的革新利器
云资源服务商
阿里云云计算数据库服务器
AnalyticDB:云数据仓库新势力在数字化浪潮中,数据已成为企业的核心资产,而云数据仓库作为数据管理与分析的关键基础设施,正扮演着愈发重要的角色。阿里云AnalyticDB作为云数据仓库领域的佼佼者,以其卓越的性能、创新的架构和丰富的功能,为企业提供了强大的数据处理与分析能力,助力企业在数据驱动的时代中脱颖而出。AnalyticDB是阿里云自主研发的云原生数据仓库,采用存储计算分离+多副本架构
- 【面试系列】云计算工程师 高频面试题及详细解答
野老杂谈
全网最全IT公司面试宝典面试云计算职场和发展
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:⭐️全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题.⭐️AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。⭐️全流程数据技术实战指南:全面讲解从数据采集到数据可视化的整个过程,掌握构建现代化数据平台和数据仓库的核心技术和方法。文章目录常见的初级面试题1.什么是云计算?2.
- 使用Airbyte连接Shopify进行数据集成实践
2301_80727036
语言模型elasticsearchjenkins
在当今的数据驱动时代,数据集成平台如Airbyte变得尤为重要。它不仅可以让从API、数据库和文件到仓库或数据湖的ELT流程变得高效,还提供了丰富的连接器,支持各种数据源的集成。尽管Airbyte的Shopify连接器已经不再推荐使用,但它的使用方法仍然能为我们揭示一些重要的实践技巧。技术背景介绍Airbyte是一个开源的数据集成平台,专注于从各种数据源将数据提取、加载到目标数据仓库或者数据湖中。
- Java EDW三剑客:如何让数据从“沼泽”变身“报告神器”?手把手教你玩转企业数据仓库!
墨瑾轩
Java乐园java数据仓库开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣一、你的EDW在“数据沼泽”里?是时候请个“数据炼金术士”了!“数据散落在10个系统里,生成月报要熬3个通宵?”——别慌!今天我们就用JDBC+ApacheSpark+Thymeleaf三剑客,教你如何让Java在EDW中将“数据沼泽”炼成“报告神器”!从“数
- Vue2中Vuex的五种核心状态管理详解:从State到Modules
上单带刀不带妹
Vue前端javascript开发语言vuevue.js
目录一、为什么需要Vuex?二、Vuex核心概念图解编辑三、五种核心状态详解1.State:数据仓库2.Getters:计算属性3.Mutations:同步修改器4.Actions:异步操作5.Modules:模块化四、各概念关系总结五、最佳实践技巧结语一、为什么需要Vuex?当组件层级变深、兄弟组件需要共享数据时,传统的props/$emit和事件总线会变得难以维护。Vuex通过集中式存储管理应
- 十、HQL:排序、联合与 CTE 高级查询
IvanCodes
Hive教程hive大数据
作者:IvanCodes日期:2025年5月15日专栏:Hive教程ApacheHive作为大数据领域主流的数据仓库解决方案,其查询语言HQL(HiveQueryLanguage)是数据分析师和工程师日常工作的核心。除了基础的SELECT-FROM-WHERE,HQL还提供了强大的排序、数据合并以及组织复杂查询的机制。本文将深入探讨HQL中的排序操作(SORTBY,ORDERBY,CLUSTERB
- 数据仓库面试题合集⑥
晴天彩虹雨
数据仓库面试解析集锦数据仓库大数据clickhousekafka
实时指标体系设计+Flink优化实战:面试高频问题+项目答题模板面试中不仅会问“你做过实时处理吗?”,更会追问:“实时指标体系是怎么搭建的?”、“你们的Flink稳定性怎么保证?”本篇聚焦实时指标体系设计与Flink优化场景,帮你答出架构设计力,也答出调优实战感。①面试核心问题导读“你们实时指标是怎么设计的?”“怎么处理指标的去重、延迟和聚合问题?”“你们的Flink作业怎么做资源优化?”“有没有
- 【StarRocks系列】StarRocks vs Mysql
漫步者TZ
StarRocksmysql数据库StarRocks分布式数据库
目录StarRocks简介核心特性典型应用场景StarRocksvsMySQL:核心区别详解关键差异总结如何选择?StarRocks简介StarRocks是一款高性能、全场景、分布式、实时分析型的数据库(MPP-大规模并行处理)。它诞生于解决现代企业对海量数据进行快速、复杂分析的需求,尤其是在实时数据仓库、用户行为分析、日志分析、统一数仓等场景下表现卓越。核心特性MPP架构:采用无共享架构,计算和
- 数据切片是什么意思
yijiedsfrt
数据仓库
数据切片是指将一段数据按照特定的规则或条件进行分割,以便更方便地进行处理和分析。通常情况下,数据切片可以根据不同的维度、属性、时间等进行切割,以获取更加细化和精准的数据。数据切片可以在数据仓库、数据分析等领域中广泛应用。
- 医疗AI大数据处理流程的全面解析:从数据源到应用实践
Allen_Lyb
医疗高效编程研发人工智能机器学习健康医疗架构大数据
医疗AI大数据处理流程是一个复杂而系统的工程,涉及从数据源获取到最终应用的多个关键环节。随着信息技术在医疗行业的深入应用,医疗数据呈现爆发式增长,如何有效处理这些数据并转化为有价值的医疗知识,成为推动医疗AI发展的核心问题。本报告将全面剖析医疗AI大数据处理流程的关键环节,包括数据源、数据授权、数据接入、数据清洗、数据标准化、数据治理、数据应用与AI分析,以及数据流与数据仓库的概念,为医疗AI从业
- 使用Spring Boot框架来生成HTML页面并返回给客户端
_S_Q
后端服务Javaspringboothtmlpython
文章目录1.创建SpringBoot项目1.1项目结构2.配置`pom.xml`3.编写代码3.1创建主应用程序类3.2创建数据模型3.3创建数据仓库3.4创建控制器3.5创建HTML模板4.运行应用程序总结下面是一个简单的Java实现,使用SpringBoot框架来生成HTML页面并返回给客户端。1.创建SpringBoot项目首先,确保你已经安装了Java和Maven。然后创建一个新的Spri
- Doris 数据集成 Apache Paimon
猫猫姐
Dorisdoris
Doris数据集成ApachePaimon湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,已演进出一套成熟的湖仓一体解决方案。为便于用户快速入门,我们将通过系列文章介绍ApacheDoris与各类主流数据湖格式及存储系统的湖仓一体架构搭
- Hive集成Paimon
Edingbrugh.南空
数据湖hive大数据hivehadoop数据仓库
引言在大数据领域,数据存储与处理技术不断演进,各类数据管理工具层出不穷。ApacheHive作为经典的数据仓库工具,以其成熟的生态和强大的批处理能力,长期服务于海量数据的存储与分析;而ApachePaimon作为新兴的流式湖仓存储引擎,具备实时写入、高效查询和统一批流处理等特性,为数据管理带来了新的活力。将Hive与Paimon进行集成,能够充分融合两者优势,实现数据的高效存储、实时处理与灵活分析
- SPL轻量级多源混合计算
LuckJudy
数据计算多源混算esProcSPL
多样性数据源混合计算是常态需求,同构或异构数据库之间、文件与数据库、NoSQL与文件等,理论上任何数据存储之间都涉及数据混合计算和分析。但混算需求目前技术解决的并不好,同构库之间某些数据库还能支持,而完全异构的数据源实施混算就比较麻烦。经常要借助逻辑数据仓库,但基于SQL的逻辑数仓不仅能力有限,而且体系过于沉重,经常会比应用本身还复杂,只适合应用于大型场景中,并不适合众多日常的轻量多源混算场景。S
- 云原生数仓 vs 传统数仓:深度拆解区别、优劣势及主流选型
limnade
云原生数据仓库
云原生数仓vs传统数仓:深度拆解区别、优劣势及主流选型在数据驱动业务的当下,数据仓库作为企业数据中枢,承载着核心决策支持使命。随着云技术普及,云原生数仓与传统数仓的选型博弈愈发关键。本文从架构逻辑、核心能力到落地实践,深度拆解两者区别、优劣势,并梳理主流数仓方案,帮你精准锚定适配选型。一、底层逻辑:架构设计差异(一)传统数仓:紧耦合“巨石架构”传统数仓(如Teradata经典方案、Greenplu
- 深入理解SQLMesh中的SCD Type 2:缓慢变化维度的实现与管理
梦想画家
数据分析工程数据工程SCD2维度模型SQLMesh
在数据仓库和商业智能领域,处理随时间变化的数据是一个常见且具有挑战性的任务。缓慢变化维度(SlowlyChangingDimensions,SCD)是解决这一问题的经典模式。本文将深入探讨SQLMesh中SCDType2的实现方式、配置选项以及实际应用场景。什么是SCDType2?SCDType2是一种用于跟踪维度表中记录历史变化的模型。它通过为每条记录添加有效时间范围(valid_from和va
- 数据仓库 vs 数据湖:架构、应用场景与技术差异全解析
chat2tomorrow
SQL2API数据仓库低代码平台数据仓库架构sql2api大数据低代码数据湖
目录一、概念对比:结构化vs全类型数据二、技术架构对比1.数据仓库架构特点2.数据湖架构特点三、典型应用场景数据仓库适合:数据湖适合:四、数据湖仓一体:趋势还是折中?五、总结:如何选型?结语在大数据时代,“数据仓库”和“数据湖”常被同时提及,甚至被误认为是同一类技术方案。然而,二者在架构设计、数据处理方式、应用场景等方面存在显著差异。本文将从多个维度对比数据仓库与数据湖,帮助你厘清概念,选型不再困
- mysql查询每种产品的销售总额_MDX示例:统计各产品每个季度的销售排名
爱喝冰红茶
ITPUB数据仓库与数据挖掘论坛用户Damon__Li问:统计各种产品在本年每个季度的销售排名,(现在有日期、产品维度和销售额度量)大体显示如下Q1Q2Q3Q4销售额排名销售额排名销售额排名销售额排名产品130002200035000140ITPUB数据仓库与数据挖掘论坛用户Damon__Li问:统计各种产品在本年每个季度的销售排名,(现在有日期、产品维度和销售额度量)大体显示如下Q1Q2Q3Q4
- 从0到1搭建数据仓库指南
从0到1搭建一个数据仓库(DataWarehouse,DW)是一个复杂但结构化很强的工程。它不仅仅是技术选型,更是业务理解、架构设计、流程规范的结合。以下是一个清晰、分阶段的指南,帮助你系统性地完成搭建:核心原则:以业务驱动为核心:所有设计和开发都围绕解决实际业务问题展开。数据质量是生命线:从源头保证数据的准确性、一致性和完整性。可扩展性和灵活性:设计时要考虑未来数据量增长、新业务需求和技术演进。
- 【面试系列】Swift 高频面试题及详细解答
野老杂谈
全网最全IT公司面试宝典面试swift职场和发展编程语言
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:⭐️全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题.⭐️AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。⭐️全流程数据技术实战指南:全面讲解从数据采集到数据可视化的整个过程,掌握构建现代化数据平台和数据仓库的核心技术和方法。文章目录Swift初级面试题及详细解答1.什么
- Hive 3.x集成Apache Ranger:打造精细化数据权限管理体系
引言在数据驱动的时代,企业的数据安全和权限管理愈发关键。Hive作为大数据领域常用的数据仓库工具,存储着海量敏感数据;ApacheRanger则是一款强大的权限管理框架,能为Hadoop生态组件提供细粒度的访问控制。将Hive3.x与ApacheRanger集成,可有效实现数据的分级管控,保障数据在安全的前提下合理使用。接下来,就为你带来Hive3.x集成ApacheRanger的详细操作指南,助
- 使用ETLCloud的SAP数据处理组件释放SAP数据的力量
苛子
数据仓库数据库数据挖掘
SAP用户面临的问题SAPEnterpriseResourcePlanning(ERP)作为国内最广泛使用的ERP系统之一许多大型企业都围绕SAP来进行业务的协同和数据流转。为了能对SAP中的数据用于分析、数据科学等业务我们需要把SAP中的数据同步到本地数据仓库中进行可视化分析和处理,而就这么一个简单的需求可以说是难倒很多企业的IT人员。目前很多企业往往花费大量的时间和精力在SAP的数据导出上,而
- 一台电脑最多能接多少个硬盘
服务器苹果签名分发
电脑
在电脑的世界里,硬盘就像是我们的“数据仓库”,存储着我们工作、学习、娱乐等方方面面的重要信息。随着数据量的不断增长,很多小伙伴都在想,能不能给电脑多接几个硬盘,来满足日益膨胀的存储需求呢?那么,一台电脑最多能接多少个硬盘呢?今天咱们就来好好探讨一下。硬盘接口类型决定接入数量基础电脑连接硬盘主要通过不同的接口,常见的有SATA接口、PCIe接口和USB接口等,不同接口类型对硬盘接入数量有着不同的限制
- DataHub 扩展数据源插件开发
北斗云
大数据#DataHubDataHub数据治理元数据管理主数据管理大数据
1.插件系统架构DataHub的元数据摄取框架采用了模块化、可扩展的插件架构,允许开发者轻松添加新的数据源连接器。这种架构使得DataHub能够与各种数据系统集成,包括数据库、数据仓库、BI工具、云服务等。1.1核心组件插件系统的核心组件包括:Source基类:所有数据源插件的基础类,定义了插件的基本接口和行为配置类:每个插件的配置参数定义装饰器:用于注册插件和声明插件能力工作单元:表示要处理的元
- 鸿蒙开发实战之Distributed Service Kit实现美颜相机多设备协同
harmonyos-next
一、核心能力全景通过DistributedServiceKit实现三大创新场景:多机位联拍手机+平板+智慧屏同步取景(时延{if(device.type==='tablet'){suggestCrossDeviceEdit();//推荐跨设备编辑}});//创建共享数据仓库constdataStore=distributedService.createDataStore({name:'beauty
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =