- 克服 AI 时代的恐惧、不确定性和疑虑
人工智能
1学习咋通过培养AI技能,提高职场对AI的积极性职场中抵触AI的现象确实存在。很多人并非不愿意接受变化,而是因为对AI存在“FUD”——即恐惧(Fear)、不确定性(Uncertainty)和疑虑(Doubt)。要在AI转型时代取得成功,必须积极应对这些FUD,并营造一种支持学习的文化,让员工能够适应和成长,最终推动整个组织共同进步。大厂们都始终在内部率先使用和测试自家的AI技术,然后才推向客户。
- 归并排序(二叉树的后续遍历思想和数组的双指针技巧)
冰火同学
力扣算法排序算法数据结构
这次归并排序就只讲思路了,代码实现放到下次刷题再做首先确认一下归并排序的时间复杂度是NlogN的时间复杂度。实现归并排序的算法,我认为有几个困难需要克服掉1、首先就是要明确归并排序的算法思想,就是二叉数据的后序遍历,就是先从中间分割成两个子数组,然后继续分,直到只剩下一个元素,那么此时就是有序的,这个和构造二叉树时的分解思想十分相似,把子问题全部解决,那问题也就都解决了,至于我们只关注其中一个节点
- 搜广推校招面经三十八
Y1nhl
搜广推面经算法pytorch推荐算法搜索算法机器学习
字节推荐算法一、场景题:在抖音场景下为用户推荐广告词,吸引用户点击搜索,呈现广告这一流程的关键点以及可能遇到的困难。二、Transformer中对梯度消失或者梯度爆炸的处理在Transformer模型中,梯度消失和梯度爆炸是深度学习中常见的问题,尤其是在处理长序列数据时。为了克服这些问题,Transformer采用了一系列技术:2.1.残差连接(ResidualConnections)每个子层(包
- 关于无感方波启动预定位阶段
蓑衣客VS索尼克
个人总结经验分享单片机学习
一、预定位的核心目标与原理消除启动不确定性无位置传感器下,转子初始位置未知,直接换相可能导致反转或失步。预定位通过施加固定方向磁场,强制转子对齐至预定角度(通常0°或60°电角度),建立初始位置基准。电磁转矩平衡原理短时施加定子电流矢量,利用磁阻转矩与永磁转矩的相互作用,使转子克服静摩擦阻力,稳定至低磁阻位置。典型电流施加时间为50-200ms,电流幅值需根据电机负载惯量调整。二、经典预定位方法及
- 代表建议将禁止就业年龄歧视纳入法律,破解 35 岁+就业困境,是否具有可行性?
日记成书
热门实事学习
全国人大代表蒙媛提出将禁止就业年龄歧视纳入法律以破解35岁+群体就业困境的建议,具有显著的现实必要性,但在实施过程中仍需克服多重挑战。以下从法律基础、现实困境及可行性路径三个维度进行综合分析:一、法律修订的必要性现行法律存在明显短板现行《劳动法》《就业促进法》仅笼统禁止“等”类歧视,未明确将年龄纳入法定禁止范围。司法实践中,年龄歧视认定依赖“等”字扩展解释,但缺乏具体标准,导致劳动者维权困难。国际
- 提高SQL查询性能的7个法宝
傻儿哥
ORACLEsql数据库报表sqlserversybase存储
【IT168专稿】每个数据库平台上的SQL开发人员都是在困难中求得生存,我们总是一次又一次犯同样的错误,这是因为数据库领域还相对不成熟,是的,每个数据库厂商都在做着各种不同的努力,但作为开发人员仍然要克服各种问题,无论是在SQLServer,Oracle,DB2,Sybase,MySQL数据库,还是其它关系数据库平台上编写SQL代码,并发性、资源管理、空间管理和SQL运行速度总是困扰着开发人员。遗
- 小波包阈值去噪方法
yyytucj
人工智能算法
针对小波包去噪对含强白噪声的信号处理效果不理想问题,提出了基于互相关分析优化的VMD-小波包阈值去噪方法。该方法融合了VMD和小波包去噪的优势,通过VMD把含噪信号分解成若干个模态分量,根据互相关分析提出的临界相关系数从所有模态分量中搜寻极优模态分量,之后利用小波包阈值去噪对极优模态分量进行处理。实验结果表明,该方法对含强白噪声的信号去噪效果具有优势,能够保全信号的有效分量,克服了传统VMD去噪的
- 搜索赋能:大型语言模型的知识增强与智能提升
听吉米讲故事
语言模型人工智能自然语言处理搜索引擎
引言近年来,大型语言模型(LLM)取得了显著的进展,并在各个领域展现出强大的能力。然而,LLM也存在一些局限性,尤其是在知识库方面。由于训练数据的局限性,LLM无法获取最新的知识,也无法涵盖所有领域的专业知识。为了克服这些局限性,LLM需要依赖外部搜索来增强性能和保证输出结果的可靠性。本文将深入探讨搜索技术如何增强LLM的能力,并分析不同搜索引擎对LLM输出结果的影响。大型语言模型知识库的局限性L
- C语言 第一章 认识C语言
点纭
c语言开发语言
目录C语言的发展史为什么要学习C语言常用的IDE工具Dev-C++MicrosoftVisualStudioCLion第一个编程程序C语言的程序运行机制C语言的程序结构C语言的发展史1960年,ALGOL60语言诞生,它的块结构、数据类型等概念为C语言奠定了基础。1969年,美国贝尔实验室的肯·汤普森在开发UNIX系统时,为了克服汇编语言编程的不便,基于BCPL语言开发了B语言,这是C语言的前身。
- 在 Linux 系统上编译安装高版本 Python
perfect12312645
python
在Linux系统上进行软件安装时,我们经常会面临各种挑战,其中一个典型的情况就是官网不再提供所需软件的二进制包,这时我们就不得不进行编译安装。本文将为你详细展示如何在CentOS7.6系统上完成高版本Python的编译安装,并涵盖了一系列前置依赖的安装、高版本OpenSSL的编译安装以及相关的环境配置过程,帮助你克服可能遇到的困难。一、实验环境说明本次实验使用的系统是CentOS7.6,你可以通过
- Redis
VVVVVxVVVVV
redis数据库nosqlmemcachedlinux
Redis一、NoSqlNoSQL(NotOnlySql),泛指非关系型的数据库。传统项目网站访问量一般不大,单机版数据库就很不错,随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决
- 基于量子旋转门的量子粒子群算法:突破粒子群算法局限的高效优化方法
m0_57781768
算法量子计算
基于量子旋转门的量子粒子群算法:突破粒子群算法局限的高效优化方法在现代优化算法中,粒子群算法(PSO)因其简单易实现且高效的特点而被广泛应用。然而,传统粒子群算法在处理复杂优化问题时,常常会陷入局部最优解,无法找到全局最优解。为了解决这一问题,研究人员提出了一种基于量子旋转门的量子粒子群算法(QPSO),通过引入量子计算的思想和技术,有效地克服了传统PSO的局限性。本文将详细介绍量子粒子群算法的基
- 超越实验室:打造真正在现实世界中奏效的 AI (泛化性与鲁棒性)
海棠AI实验室
人工智能理论与学术机器学习人工智能信息可视化
人工智能正以前所未有的速度从研究实验室走向我们的日常生活。我们看到AI驱动着从语音助手到推荐引擎的各种应用,而自动驾驶汽车、个性化医疗等更具变革性的应用前景也始终令人期待。然而,要真正释放AI的潜力,我们还需要克服一个关键障碍:让AI真正在现实世界中可靠地运行,而不仅仅是在受控的实验室环境中。想象一下,一辆自动驾驶汽车在一个晴朗的下午行驶时表现完美,但当它进入一个大雾天气区域时,它却无法识别前方的
- 马斯克的Grok-3:技术突破与行业冲击的深度解析
♢.*
马斯克人工智能大模型xAIGrok3
一、技术架构与核心突破超大规模算力集群Grok-3基于xAI自研的Colossus超级计算机训练完成,搭载20万块英伟达H100GPU,累计消耗2亿GPU小时,算力投入是前代Grok-2的10倍48。这一规模远超行业平均水平,例如中国团队DeepSeek-V3的算力消耗仅为Grok-3的1/2634。技术挑战:团队在122天内完成首期10万块GPU部署,克服了散热、电力供应等工程难题1。思维链推理
- NoSQL调研与学习(一)
JUNPR
NoSQLredisnosql数据库
NoSQL数据库调研与学习简言1.1NoSQL概述NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,特别是大数
- ADX物化视图的内存优化与去重策略
t0_54coder
编程问题解决手册flaskpython后端个人开发
在AzureDataExplorer(ADX)中使用物化视图(MaterializedView)时,处理大规模数据集的去重和聚合操作时,可能会遇到内存问题。本文将详细讨论如何通过优化策略来克服这些问题,并提供一个具体的实例来展示如何实现。问题背景当我们尝试在ADX中创建一个物化视图,用于从源表中去除重复数据并进行聚合操作时,常常会遇到内存不足的错误。这通常是由于distinct*操作过于消耗内存,
- 微服务设计模式:基本架构和设计指南
可乐泡枸杞·
架构修炼之路架构微服务设计模式
微服务设计模式:基本架构和设计指南了解微服务软件架构的设计模式,以克服诸如松耦合服务、定义数据库等挑战。微服务架构已成为现代应用开发的事实上的选择。尽管它解决了许多问题,但它并不是万能的。与所有软件一样,它有自己独特的一组挑战需要解决。这就需要学习微服务中的常见设计模式,并通过可重用的解决方案来解决这些挑战。在深入探讨设计模式之前,了解微服务架构所建立的核心原则非常重要:图1*:微服务架构核心实践
- LeetCode--32. 最长有效括号【栈和dp】
Rinai_R
LeetCodeleetcode算法职场和发展golang数据结构动态规划
32.最长有效括号前言分享一下dp和栈两个方法正文给你一个只包含'('和')'的字符串,找出最长有效(格式正确且连续)括号子串的长度。这道题与20.有效的括号类似,但是这道题需要计算出最长的有效括号字串的长度,所以做法并不完全一样。动态规划该题目dp方法最难的就是得出状态转移方程,只要克服了这一点,剩下都很简单,下面,我们以字符串"((())()("为例子。从左向右遍历,设定f[i]为包含当前下标
- 对正则表达式说不!!!
哒啵Q297
正则表达式
可能大家都会和我一样,时常会遇到正则表达式,有时候会忘记某些字符而苦恼。今天就帮助大家克服它,虽然不多,但我认为掌握这些足够了,万变不离其宗,以不变应万变。一、正则表达式内容分类1.字符类[abc]:匹配方括号内的任意一个字符,如a、b或c。[^abc]:匹配方括号内不在的任意一个字符,即匹配除a、b、c之外的任何字符。[a-z]:匹配任意一个小写字母(范围从a到z)。[A-Z]:匹配任意一个大写
- 简述fpga的原理和结构_几组实用FPGA原理设计图
Tengfei Jiang
简述fpga的原理和结构
FPGA(Field-ProgrammableGateArray),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。FPGA的开发相对于传统PC、单片机的开发有很大不同。FPGA以并行运算为主,以硬件描述语言来实现;相比于PC或单
- AI赋能前端开发:解决问题能力的跃迁
前端
近年来,人工智能(AI)技术蓬勃发展,深刻地改变着各行各业的工作方式。从自动驾驶到医疗诊断,AI的触角几乎延伸到了社会的每一个角落。而作为互联网时代最前沿的技术领域之一,前端开发也正在经历着AI带来的深刻变革。本文将探讨AI如何提升前端开发人员的分析和解决问题的能力,并最终实现开发效率的显著提升。我们将会重点关注AI写代码工具如何帮助开发者克服挑战。前端开发的痛点与挑战传统的前端开发常常面临诸多挑
- AI写代码工具赋能前端创业:效率提升,弯道超车
前端
对于想要自主创业的前端工程师来说,机遇与挑战并存。快速变化的技术环境、激烈的市场竞争以及居高不下的研发成本,都让这条路充满荆棘。然而,人工智能(AI)技术的快速发展,特别是AI写代码工具的出现,为前端开发者带来了前所未有的机遇,帮助他们克服创业路上的重重困难,实现弯道超车。本文将探讨AI前端开发如何助力自主创业,并以ScriptEcho为例,详细阐述其赋能作用。AI前端开发如何助力自主创业在创业初
- Aitken 逐次线性插值
F_D_Z
数理数值分析Aitken逐次线性插值
Aitken逐次线性插值用Lagrange插值多项式Ln(x)L_n(x)Ln(x)计算函数近似值时,如需增加插值节点,那么原来算出的数据均不能利用,必须重新计算。为克服这个缺点,可用逐次线性插值方法求得高次插值。令Ii1,i2,...,in(x)I_{{i_1},{i_2},...,i_n(x)}Ii1,i2,...,in(x)表示函数f(x)f(x)f(x)关于节点xi1,xi2,⋅⋅⋅,xi
- AIOS: 一个大模型驱动的Multi-Agent操作系统设计与Code分析
大霸王龙
系统分析业务知识图谱机器学习人工智能pythonmlflow
AIOS:一个大模型驱动的Multi-Agent操作系统设计与Code分析随着人工智能技术的快速发展,传统操作系统逐渐暴露出难以适应AI时代多样化需求的局限性。特别是在支持多个智能体协同工作方面存在显著不足。为此,我们提出了一种名为AIOS(ArtificialIntelligenceOperatingSystem)的大模型驱动型多智能体操作系统,旨在克服现有操作系统的诸多缺陷。一、引言AIOS的
- NoSQL,CAP理论与BASE理论
TOYG
nosql数据库
NoSQL什么是NoSQLNoSQL=NotOnlySQL,意思:不仅仅是SQL;泛指非关系型的数据库,随着互联网Web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的社交网络服务类型的Web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展,NoSQL数据库的产生就是为了解决大规模数据集合多种数据
- “【Stable Diffusion】详解安装过程中的常见故障及解决策略“
AIGC设计所
stablediffusion人工智能AI作画媒体aigc
前言:在探索AI图像生成技术的过程中,StableDiffusionwebui以其强大的功能和用户友好的界面受到了广泛欢迎。然而,安装和使用过程中难免会遇到各种报错问题,这些难题往往让初学者望而却步。本文旨在为广大用户提供一份详尽的StableDiffusionwebui安装使用报错指南,通过分析常见问题及其解决方案,帮助您顺利克服障碍,轻松驾驭这一强大的图像生成工具,让创意无限延伸。以下是我们的
- 【DeepSeek】DeepSeek小模型蒸馏与本地部署深度解析DeepSeek小模型蒸馏与本地部署深度解析
后端研发Marion
AI大模型技术机器学习人工智能深度学习deepseek本地部署
一、引言与背景在人工智能领域,大型语言模型(LLM)如DeepSeek以其卓越的自然语言理解和生成能力,推动了众多应用场景的发展。然而,大型模型的高昂计算和存储成本,以及潜在的数据隐私风险,限制了其在某些场景下的应用。为了克服这些挑战,DeepSeek引入了知识蒸馏技术,通过将大型模型的知识转移到小型模型中,实现了模型的轻量化。本文将深入探讨DeepSeek小模型蒸馏的原理,并提供详细的本地部署步
- 《使用深度生成学习预测无对比心脏电影 MRI 中急性心肌梗死的晚期钆增强》论文精度
Easonhe
人工智能论文精读学习人工智能计算机视觉
PredictingLateGadoliniumEnhancementofAcuteMyocardialInfarctioninContrast-FreeCardiacCineMRIUsingDeepGenerativeLearning背景:晚期钆增强(LGE)心脏磁共振(CMR)是诊断心肌梗死(MI)的标准技术,然而,由于使用钆造影剂,该技术存在风险。基于无造影剂CMR进行MI评估的技术有望克服
- LabVIEW图像采集与应变场测量系统
LabVIEW开发
LabVIEW开发案例LabVIEW开发案例
开发了一种基于LabVIEW的图像采集与应变场测量系统,提供一种高精度、非接触式的测量技术,用于监测物体的全场位移和应变。系统整合了实时监控、数据记录和自动对焦等功能,适用于工程应用和科学研究。项目背景传统的位移和应变测量技术往往依赖于接触式传感器,这不仅限制了测量范围,还可能影响测试对象的物理状态。为了克服这些限制,开发了一种基于LabVIEW的非接触式图像采集与应变场测量系统。该系统使用数字图
- 《大话数据结构》-程杰自学数据结构感悟
安夏886
数据结构算法
Chatzero:前言-2024.4.22作者著书的感慨记录:1.不管如何,现在您看到了这本书,那就说明我已经克服了困难战胜了自己。悟:探索一个新的领域,例如写书,本来就会有许多困难,对照我自身也是如此。但是,怕而不退,畏而不缩,这是我和作者所共同追求的,幸福感满满!2.好的自学读物的目标是让初学者“独自”全盘掌握知识,需要强调“独自”一词,这就说明读者在阅读时,是完全依靠自己的力量来向未知出发挑
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$