- 计算机视觉|3D 点云处理黑科技:PointNet++ 原理剖析与实战指南
紫雾凌寒
AI炼金厂#深度学习#计算机视觉深度学习计算机视觉3dcnnPointNet++3d云3d云数据
一、引言在当今数字化与智能化快速发展的时代,3D点云处理技术在多个前沿领域中发挥着重要作用。特别是在自动驾驶和机器人视觉等领域,这项技术已成为实现智能化的关键支撑。以自动驾驶为例,车辆需要实时感知周围复杂的环境信息,包括行人、车辆、交通标志和路况等。3D点云数据能够提供高精度的三维空间信息,使自动驾驶车辆更准确地识别和定位周围物体,从而做出安全、合理的行驶决策。在城市街道上,自动驾驶车辆通过3D点
- 同一个问题看看Grok3怎么回答-什么是智能体?
释迦呼呼
AI一千问架构深度学习人工智能机器学习自然语言处理
关键要点研究表明,智能体(可能是“智能代理”的意思)在人工智能中是一个能够感知环境、自主行动以实现目标的系统。证据倾向于认为,智能体可以是简单的(如恒温器),也可以是复杂的(如自动驾驶汽车),并可能通过机器学习改进性能。关于“智能体”这一术语,存在争议,可能指的是人工智能中的智能代理,或在某些上下文中指具有物理身体的AI系统(如机器人)。什么是智能体?定义智能体在人工智能中似乎是一个能够感知其环境
- 利用CUDA与OpenCV实现高效图像处理:全面指南
快撑死的鱼
C++(C语言)算法大揭秘opencv图像处理人工智能
利用CUDA与OpenCV实现高效图像处理:全面指南前言在现代计算机视觉领域,图像处理的需求日益增加。无论是自动驾驶、安防监控,还是医疗影像分析,图像处理技术都扮演着至关重要的角色。然而,图像处理的计算量非常大,往往需要强大的计算能力来保证实时性和高效性。幸运的是,CUDA和OpenCV为我们提供了一种高效的图像处理解决方案。本篇文章将详细介绍如何结合CUDA与OpenCV,利用GPU的强大计算能
- 大话机器学习三大门派:监督、无监督与强化学习
安意诚Matrix
机器学习笔记机器学习人工智能
以武侠江湖为隐喻,系统阐述了机器学习的三大范式:监督学习(少林派)凭借标注数据精准建模,擅长图像分类等预测任务;无监督学习(逍遥派)通过数据自组织发现隐藏规律,在生成对抗网络(GAN)等场景大放异彩;强化学习(明教)依托动态环境交互优化策略,驱动AlphaGo、自动驾驶等突破性应用。文章融合技术深度与江湖趣味,既解析了CNN、PCA、Q-learning等核心算法的"武功心法"(数学公式与代码实现
- 云原生边缘智能:构建分布式IoT设备的自主决策引擎
桂月二二
云原生分布式物联网
引言:突破云计算边界Tesla自动驾驶系统通过边缘节点每秒处理2300帧图像,决策延迟/dev/quality_valve"四、生产场景解决方案4.1典型行业应用场景4.2故障自愈流程#边缘节点健康检查脚本#!/bin/bashcheck_gpu_utilization(){util=$(nvidia-smi--query-gpu=utilization.gpu--format=csv,nohea
- C语言基础系列【20】内存管理
程序喵大人
C语言基础系列c语言开发语言c++后端面试
博主介绍:程序喵大人35-资深C/C++/Rust/Android/iOS客户端开发10年大厂工作经验嵌入式/人工智能/自动驾驶/音视频/游戏开发入门级选手《C++20高级编程》《C++23高级编程》等多本书籍著译者更多原创精品文章,首发gzh,见文末记得订阅专栏,以防走丢C++基础系列专栏C语言基础系列C++大佬养成攻略在C++编程中,内存管理是一个至关重要的概念。要深入理解内存管理,我们肯定要
- 在 PiscTrace 上使用 YOLO 进行预测与 MiDaS 景深补偿:体验纯视觉自动驾驶的数据分析
那雨倾城
PiscTrace人工智能计算机视觉图像处理自动驾驶YOLO视觉检测
随着自动驾驶技术的不断发展,视觉感知系统逐渐成为车辆感知的核心组件。PiscTrace作为一款支持高效视图处理的桌面应用,集成了先进的计算机视觉工具,如YOLO目标检测模型和MiDaS景深估计模型,能够为纯视觉自动驾驶的实现提供强大的支持。通过这两个模型的结合,PiscTrace可以提供高精度的目标识别与环境感知功能,帮助用户进行实时的驾驶数据分析,为决策系统提供宝贵的数据支持。本文将详细介绍如何
- 专业 英语
程序员爱德华
英语专业英语
文章目录一、计算机1.计算机基础(1)计算机组成原理(2)计算机网络(3)数据库(4)编译原理(5)离散数学2.软件开发(1)编程词汇(2)开发术语(3)Linux(4)软件3.就业领域(1)职场(2)芯片(3)自动驾驶(4)嵌入式硬件4.深度学习(1)论文(2)深度学习DL(3)计算机视觉CV(4)自然语言处理NLP(5)推荐系统(6)计算机图形学二、数学三、机械、材料四、医药五、英美计量单位一
- Agent 框架与应用
power-辰南
企业级AI项目实战人工智能大模型aiagent
1.1初识Agent:智能体的核心能力AIAgent是一种基于大模型的自主任务执行系统,能够通过感知、决策、规划和执行实现复杂目标的闭环达成。其核心能力可拆解为以下四部分:1.1.1感知能力(Perception)Agent通过多模态输入接口获取环境信息:•数据采集:集成传感器(如自动驾驶的激光雷达)、API(如天气数据接口)、文本/语音交互系统等;•多模态解析:支持文本、图像、语音的联合处理(如
- 车载SerDes芯片的重要性:自动驾驶与智能座舱的神经网络
空间机器人
Serdes知识合集自动驾驶神经网络人工智能
车载SerDes芯片的重要性:自动驾驶与智能座舱的神经网络在智能汽车时代,数据就是“燃料”,而SerDes芯片(串行器/解串器)就是让这些数据以光速奔跑的“血管”。随着自动驾驶(ADAS/ADS)和智能座舱的发展,摄像头、雷达、LiDAR及高清显示屏的数量激增,数据量呈指数级增长。如何高效、低延迟、低误码率地传输这些数据,成为决定自动驾驶安全性和座舱体验的关键问题。这时候,高性能车载SerDes芯
- 基于深度学习的视频修复
SEU-WYL
深度学习dnn深度学习音视频人工智能dnn
基于深度学习的视频修复是一种利用深度学习技术对视频进行处理和优化,以修复视频中的损坏部分、提升视频质量、去除噪声和增强视觉效果的方法。这种技术在电影修复、视频编辑、监控视频增强、自动驾驶和虚拟现实等多个领域具有广泛应用。以下是关于这一领域的系统介绍:1.任务和目标视频修复的主要任务和目标包括:去噪声:去除视频中的噪声,提升视频的视觉质量。去模糊:减少或消除视频中的模糊区域,使视频更清晰。去伪影:消
- 镜像世界架构揭秘:全球领先的视频孪生与三维重构技术
云栖道人
重构人工智能
在数字孪生技术的迅猛发展下,镜像世界浙江科技有限公司凭借其全球领先的视频孪生和三维重构技术,成为行业的破局者和新兴黑马。本文将深入解析其核心技术架构,探讨其如何通过技术创新推动智慧城市、自动驾驶、安防监控等多个领域的应用落地。一、镜像世界的技术架构概览镜像世界的技术架构围绕高效的数据采集、智能数据处理、三维建模与融合、实时交互及系统管理五大核心模块构建,形成完整的视频孪生技术体系。1.数据采集与输
- 清华团队发布多模态“神探”Migician:24.94%性能碾压,解锁多图定位的无限可能—— 安防、自动驾驶、医疗影像的AI“鹰眼”革命
花生糖@
AIGC学习资料库人工智能自动驾驶机器学习
引言:当AI学会“跨图追凶”2025年,安防监控摄像头每天产生3.5万亿帧画面,自动驾驶汽车每秒处理20路传感器图像,医疗影像科医生年均分析50万张CT片——多图像定位能力已成为AI落地的命门。清华大学联合北交大、华中科大发布的Migician模型,凭借24.94%的性能碾压优势,让AI首次实现“跨图像精准狙击”。这个突破性工具,正在重新定义从安防到医疗的20+行业规则。一、技术深析:Migici
- 基于 MATLAB仿真卡尔曼滤波原理及应用
资深码侬
matlabmatlab开发语言
基于MATLAB仿真卡尔曼滤波原理及应用简介:《卡尔曼滤波原理及应用:MATLAB仿真》主要介绍数字信号处理中的卡尔曼(Kalman)滤波算法及在相关领域应用。《卡尔曼滤波原理及应用:MATLAB仿真》共7章。第1章为绪论。第2章介绍MATLAB算法仿真的编程基础。第3章介绍线性Kalman滤波。第4章讨论扩展Kalman滤波,并介绍其在目标跟踪和制导领域的应用和算法仿真。第5章介绍UKF滤波算法
- 驱动 AI 边缘计算新时代!高性能 i.MX 95 应用平台引领未来
WPG大大通
NXP产线ATU伊布小編(一部)人工智能边缘计算大大通方案ai汽车工业
智慧浪潮崛起:AI与边缘计算的时代正悄然深植于我们的日常生活之中,无论是火热的ChatGPT与DeepSeek语言模型,亦或是Meta智能眼镜,AI技术已经无形地影响着我们的生活。这股变革浪潮并未停歇,而是进一步催生了更高效、更贴近现实需求的技术演进。然而,随着AI应用场景的拓展,传统云计算在实时性、隐私保护与带宽等方面逐渐面临瓶颈。特别是在自动驾驶、智慧医疗、工业自动化等高精度应用中,毫秒级的延
- 云原生边缘计算:重塑分布式智能的时空边界
桂月二二
云原生边缘计算分布式
引言:算力向数据源头迁移的革命特斯拉自动驾驶系统每小时产生20TB边缘数据,时延要求低于50ms。中国移动5G边缘云实现ARPU值提升38%,华为云IEF平台将工业质检响应速度提升至15ms以内。ABIResearch预测2026年边缘AI芯片市场规模达520亿美元,KubeEdge管理边缘节点数突破千万级,单节点资源开销仅为K8s的1/8。一、边缘计算架构范式演进1.1技术架构对比矩阵特征维度中
- 智能算法安全优化与关键技术实践
智能计算研究中心
其他
内容概要智能算法的安全优化与关键技术实践已成为人工智能发展的核心命题。在医疗影像分析、金融风控、自动驾驶等场景中,联邦学习的分布式协作机制有效解决了数据孤岛问题,而生成对抗网络通过对抗训练增强数据生成能力,为小样本场景提供技术支撑。与此同时,可解释性算法通过特征重要性分析与决策路径可视化,显著提升模型透明度,降低黑箱风险。在技术实现层面,特征工程的自动化筛选与超参数动态调整策略优化了模型性能,结合
- 跨领域算法安全优化与实践路径
智能计算研究中心
其他
内容概要在算法技术加速渗透金融、医疗、自动驾驶等关键领域的背景下,跨领域算法的安全性与可落地性成为核心挑战。本书从联邦学习的隐私保护架构切入,探讨如何通过可解释性算法增强模型透明度,并引入量子计算与边缘计算的协同优化框架,构建兼顾效率与安全的技术范式。值得注意的是,医疗影像分析中的对抗攻击防御机制与生成对抗网络驱动的推荐系统创新,揭示了算法动态演进中的风险控制逻辑。技术整合不应局限于单一场景优化,
- 特斯拉 FSD 算法深度剖析:软件层面全解读
python算法(魔法师版)
算法机器学习人工智能深度学习神经网络计算机视觉
一、引言特斯拉的FSD(FullSelf-Driving)系统作为自动驾驶领域的前沿成果,其软件层面的算法设计至关重要。本文将从软件的角度,深入探讨特斯拉FSD所采用的算法,包括感知、规划、控制等多个方面,以期为读者呈现一个全面、详细的FSD算法全景图。二、特斯拉FSD系统概述特斯拉FSD系统旨在实现车辆的完全自动驾驶,涵盖从感知周围环境到做出驾驶决策的全过程。该系统依托于特斯拉自研的硬件平台和软
- 特斯拉FSD系统:自动驾驶的未来
百态老人
人工智能笔记
FSD系统概述FSD(FullSelf-Driving)系统是特斯拉研发的一套高级自动驾驶技术,旨在实现车辆在各种道路和驾驶场景下的完全自动驾驶。FSD系统通过集成先进的计算机视觉、深度学习、传感器融合等技术,利用车辆上安装的多种传感器和先进的计算机视觉技术,实现对周围环境的感知和理解。特斯拉通过不断收集和分析实际道路数据,持续优化其自动驾驶算法,使得FSD技术的安全性和可靠性得到了大幅提升.FS
- 特斯拉FSD不同版本的进化
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
特斯拉,FSD,自动驾驶,深度学习,计算机视觉,强化学习,神经网络,模型训练1.背景介绍特斯拉自2016年推出Autopilot以来,一直致力于开发全自动驾驶系统,其目标是实现完全无人驾驶,让汽车能够像人类一样感知周围环境,做出安全可靠的驾驶决策。FSD(FullSelf-Driving)是特斯拉自动驾驶系统的最高级别,它旨在实现车辆在任何道路和环境条件下都能安全自主驾驶的能力。FSD的开发是一个
- 介绍常见的图片分类模型与算法
萧鼎
python基础到进阶教程算法分类数据挖掘
介绍常见的图片分类模型与算法在机器学习和深度学习的领域中,图片分类任务是一个广泛的应用场景。随着深度学习技术的飞速发展,很多强大的图像分类算法和模型已经被提出,广泛应用于从医疗影像到自动驾驶、从人脸识别到图像检索等多个领域。本文将重点介绍多种用于图像分类的经典算法与模型,帮助你了解在图像分类任务中常用的技术。1.传统机器学习模型在深度学习崭露头角之前,传统的机器学习模型是图像分类的主流方法。这些模
- AI自动驾驶:2025有戏,Uber受益先于特斯拉
gange574
人工智能自动驾驶机器学习AI写作大数据aiAI编程
自动驾驶:2025有戏,Uber受益先于特斯拉近期消息,优步将与Waymo在奥斯汀推出合作服务(夏季将在亚特兰大跟进)。在过去一段时间,市场情绪似乎已经转变,认为自动驾驶汽车的推广将越来越需要需求端平台,而优步作为最大的此类平台处于有利地位。比亚迪(BYD)的公告也在投资者心中凸显了一个重要观点:完全自动驾驶(FSD)市场越分散,优步作为最大的需求聚合商的地位就越有利。Techcrunch报道称,
- 计算机视觉 vs 机器视觉 | 机器学习 vs 深度学习:核心差异与行业启示
程序员Linc
计算机视觉计算机视觉机器学习深度学习机器视觉
一、计算机视觉(CV)与机器视觉(MV):从学术研究到工业落地的分水岭1.定义与目标差异计算机视觉(CV)目标是赋予计算机类似人类的视觉理解能力,通过算法对图像或视频中的目标进行识别、跟踪和语义理解。其核心是研究如何从二维图像反推三维世界的结构和规律。例如,自动驾驶中通过多摄像头融合实现道路场景理解,属于典型的CV任务。机器视觉(MV)聚焦于工业场景的自动化检测与控制,强调实时性和精准性。MV系统
- 具身智能行业
[shenhonglei]
具身觉醒:智能进化的未来之路人工智能机器人
具身智能行业综合分析资源下载-具身智能导图.xmind资源下载-具身智能导图.xmind一、行业概况定义与核心特征具身智能(EmbodiedAI)指通过物理实体(如机器人、自动驾驶设备等)与环境的动态交互,实现感知、认知和行动控制的智能系统。其核心特征是“知行合一”,强调通过实际交互提升智能水平,而非仅依赖数据训练。技术融合:结合人工智能(AI)、机器人技术、多模态大模型
- OpenCV 100道面试题及参考答案(7万字长文)
大模型大数据攻城狮
大厂面试大厂面经android面试计算机视觉opencv实时互动webrtc
OpenCV简介OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉库,它提供了丰富的函数和工具,用于处理图像和视频。OpenCV最初由英特尔公司开发,现在由一个开源社区维护和发展。主要功能和用途OpenCV的主要功能包括图像和视频处理、特征提取、目标检测、人脸识别、物体跟踪等。它可以用于各种领域,如机器人技术、医学影像、安全监控、自动驾驶等。在图像
- 深度 | 车载语音群雄并起共争智能座舱新高地
数据堂官方账号
分享人工智能语音识别
不论是苹果公司iOS系统中的智能语言助手“Siri”,还是微软Windows系统中的“Cortana”,智能语音交互早已融入我们生活之中。随着汽车产业的发展,用户消费形态的改变,自动驾驶、智能座舱、新能源这些概念已经逐渐落地成为现实,智能语音交互与汽车之间也擦出了别样的火花。由于驾驶汽车无法解放双手,对于人机互动的需求,则更多需要通过语言来实现。因此,结合了人工智能的车载语音交互系统作为汽车智能网
- [自动驾驶-传感器融合] 多激光雷达的外参标定
simba丶小小程序猿
自动驾驶自动驾驶人工智能机器学习
文章目录引言外参标定原理ICP匹配示例参考文献引言多激光雷达系统通常用于自动驾驶或机器人,每个雷达的位置和姿态不同,需要将它们的数据统一到同一个坐标系下。多激光雷达外参标定的核心目标是通过计算不同雷达坐标系之间的刚性变换关系(旋转矩阵RRR和平移向量ttt),将多个雷达的点云数据统一到同一坐标系下。具体需求包括:数据融合:消除多雷达间的位姿差异,生成全局一致的点云。减少累积误差:避免多传感器数据因
- 自动驾驶---Perception之大模型应用
智能汽车人
自动驾驶人工智能机器学习
1背景自动驾驶感知(Perception)模块在自动驾驶系统中扮演着至关重要的角色,它负责收集、处理并理解车辆周围的环境信息。随着深度学习技术的快速发展,大模型也逐渐在自动驾驶感知模块中得到了广泛应用。本篇博客主要介绍大模型在感知模块的应用。前面也介绍过如下几篇Perception相关的文章,有兴趣的读者可以了解相关内容:《自动驾驶---Perception之IPM图和BEV图》《自动驾驶---P
- 自动驾驶---LSTM模型用于轨迹预测
智能汽车人
自动驾驶lstm人工智能自然语言处理
1前言在下面几篇博客中,笔者简单介绍过Transformer,Transformer的内部结构虽然比较清晰,但对于入门者来说还是复杂了一些。《人工智能---什么是Transformer?》《自动驾驶---视觉Transformer的应用》《自动驾驶---Parking端到端架构》中介绍的轨迹Decoder模块本篇博客和读者朋友们探讨一种比较早的模型(理解起来也相对容易一些):LSTM(LongSh
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include