深度学习模型中,一般使用如下方式进行图像保存(torchvision.utils中的save_image()函数),这种方式只能保存RGB彩色图像,如果网络的输出是单通道灰度图像,则该函数依然会输出三个通道,每个通道的数值都是相同的,即“伪灰度图像”,虽然从视觉效果上看不出区别,但是图像所占内存比正常情况大了两倍。
from PIL import Image
import torch
from torchvision.utils import make_grid
import os
import torchvision
import numpy as np
# torchvision.utils.save_image(img, imgPath)
def save_multi_channel_image(tensor, filename, nrow=8, padding=2,
normalize=False, range=None, scale_each=False, pad_value=0):
"""Save a given Tensor into an image file.
Args:
tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
saves the tensor as a grid of images by calling ``make_grid``.
**kwargs: Other arguments are documented in ``make_grid``.
"""
# 用于把几个图像按照网格排列的方式绘制出来
grid = make_grid(tensor, nrow=nrow, padding=padding, pad_value=pad_value,
normalize=normalize, range=range, scale_each=scale_each)
# Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
ndarr = grid.mul_(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
im = Image.fromarray(ndarr)
im.save(filename)
def save_gray_image(img, save_dir, type, name, Gray=False):
fname, fext = name.split('.')
imgPath = os.path.join(save_dir, "%s_%s.%s" % (fname, type, fext))
# torchvision.utils.save_image(img, imgPath)
# 改写:torchvision.utils.save_image
grid = torchvision.utils.make_grid(img, nrow=8, padding=2, pad_value=0,
normalize=False, range=None, scale_each=False)
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
im = Image.fromarray(ndarr)
# im.show()
if Gray:
im.convert('L').save(imgPath) # Gray = 0.29900 * R + 0.58700 * G + 0.11400 * B
else:
im.save(imgPath)
# 适用各种图片保存
def save_tensor_image(img, save_dir, type, name, Gray=False):
fname, fext = name.split('.')
imgPath = os.path.join(save_dir, "%s_%s.%s" % (fname, type, fext))
img_array = tensor2array(img.data[0])
image_pil = Image.fromarray(img_array)
if Gray:
image_pil.convert('L').save(imgPath) # Gray = 0.29900 * R + 0.58700 * G + 0.11400 * B
else:
image_pil.save(imgPath)
# Converts a Tensor into a Numpy array
# |imtype|: the desired type of the converted numpy array
def tensor2array(image_tensor, imtype=np.uint8, normalize=True):
if isinstance(image_tensor, list):
image_numpy = []
for i in range(len(image_tensor)):
image_numpy.append(tensor2array(image_tensor[i], imtype, normalize))
return image_numpy
image_numpy = image_tensor.cpu().float().numpy()
if normalize:
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
else:
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0
image_numpy = np.clip(image_numpy, 0, 255)
if image_numpy.shape[2] == 1 or image_numpy.shape[2] > 3:
image_numpy = image_numpy[:, :, 0]
return image_numpy.astype(imtype)