[动手学深度学习-PyTorch版]-3.15深度学习基础-数值稳定性和模型初始化

3.15 数值稳定性和模型初始化

理解了正向传播与反向传播以后,我们来讨论一下深度学习模型的数值稳定性问题以及模型参数的初始化方法。深度模型有关数值稳定性的典型问题是衰减(vanishing)和爆炸(explosion)。

3.15.1 衰减和爆炸

image.png

随着内容的不断深入,我们会在后面的章节进一步介绍深度学习的数值稳定性问题以及解决方法。

3.15.2 随机初始化模型参数

在神经网络中,通常需要随机初始化模型参数。下面我们来解释这样做的原因。


image.png

3.15.2.1 PyTorch的默认随机初始化

随机初始化模型参数的方法有很多。在3.3节(线性回归的简洁实现)中,我们使用torch.nn.init.normal_()使模型net的权重参数采用正态分布的随机初始化方式。不过,PyTorch中nn.Module的模块参数都采取了较为合理的初始化策略(不同类型的layer具体采样的哪一种初始化方法的可参考源代码),因此一般不用我们考虑。

3.15.2.2 Xavier随机初始化

image.png

小结

  • 深度模型有关数值稳定性的典型问题是衰减和爆炸。当神经网络的层数较多时,模型的数值稳定性容易变差。
  • 我们通常需要随机初始化神经网络的模型参数,如权重参数。

你可能感兴趣的:([动手学深度学习-PyTorch版]-3.15深度学习基础-数值稳定性和模型初始化)