- MSE分类时梯度消失的问题详解和交叉熵损失的梯度推导
阿正的梦工坊
MachineLearningDeepLearning分类人工智能深度学习机器学习
下面是MSE不适合分类任务的解释,包含梯度推导。以及交叉熵的梯度推导。前文请移步笔者的另一篇博客:大模型训练为什么选择交叉熵损失(Cross-EntropyLoss):均方误差(MSE)和交叉熵损失的深入对比MSE分类时梯度消失的问题详解我们深入探讨MSE(均方误差)的梯度特性,结合公式推导和分析,解释为什么在预测值接近0或1时梯度趋于0,以及这背后的含义。我会尽量保持清晰且严谨,适合高理论水平的
- python学智能算法(八)|决策树
西猫雷婶
人工智能python学习笔记机器学习python决策树开发语言
【1】引言前序学习进程中,已经对KNN邻近算法有了探索,相关文章链接为:python学智能算法(七)|KNN邻近算法-CSDN博客但KNN邻近算法有一个特点是:它在分类的时候,不能知晓每个类别内事物的具体面貌,只能获得类别,停留在事物的表面。为了进一步探索事物的内在特征,就需要学习新的算法。本篇文章就是在KNN的基础上学习新算法:决策树。【2】原理分析在学习决策树执之前,需要先了解香农熵。本科学控
- 《Java八股文の文艺复兴》第四篇:ThreadLocal的平行宇宙——弱引用是通往OOM的时空虫洞?
程序猿chen
面霸の自我修养(面试篇)「Java八股文の文艺复兴」java开发语言后端面试跳槽职场和发展安全
楔子:量子泡沫中的幽灵代码"当你在ThreadLocal中写入秘密时,整个宇宙的线程都在窥视它。"上一场战役我们封印了ConcurrentHashMap的熵增奇点,但新的危机正在量子泡沫中酝酿。在某个平行宇宙里,一行看似无害的threadLocal.set(user)正在撕裂JVM的内存维度,而弱引用竟成为打开OOM虫洞的钥匙。此刻,让我们戴上RASP打造的因果律护目镜,穿越ThreadLocal
- 【认知框架重构】
调皮的芋头
人工智能神经网络
在信息高度互联的今天,寻找信息洼地和利益洼地已成为获取超额收益的核心能力。这两种"洼地"本质上是市场非有效性的具象化表现,其形成机制和挖掘方法值得系统研究。以下从底层逻辑到操作层面的深度分析:一、认知框架重构时空差理论:信息传播存在物理时滞(如跨境政策变化)、认知时滞(专业门槛导致的理解延迟)、传播层级衰减(信息在传递中的失真)熵增对抗模型:市场参与者维持信息优势需要持续负熵输入,当维护成本超过收
- 人工智能与机器学习入门:基尼系数(Gini Index)和基于熵(Entropy)
基尼系数基于熵机器学习入门
在决策树应用一文中,在构建决策分类树应用决策算法时,介绍了基尼系数(GiniIndex)和基于熵(Entropy)两种算法。本文通过实例来更加深入的介绍一下这两个算法。仍然以简单的数据为例:id喜欢颜色是否有喉结身高性别1绿否165女2蓝是170男3粉否172女4绿是175男基尼系数分别对喜欢颜色是否有喉结求基尼系数如下:喜欢的颜色id喜欢颜色性别1绿女2蓝男3粉女4绿男对于姓别女分类而言,数据如
- 知识蒸馏 vs RLHF:目标函数与收敛分析
从零开始学习人工智能
人工智能
1.知识蒸馏(KnowledgeDistillation)知识蒸馏是一种模型压缩技术,旨在将大型复杂模型(教师模型)的知识迁移到较小的模型(学生模型)中,以提高学生模型的性能。目标函数知识蒸馏的目标函数通常由两部分组成:分类损失(StudentLoss):学生模型的输出与真实标签之间的交叉熵损失,表示为:[Lclassification=CrossEntropy(y,q(1))=−∑i=1Nyil
- 【第14届蓝桥杯】软件赛CB组省赛
Guiat
算法竞赛真题题解蓝桥杯
个人主页:Guiat归属专栏:算法竞赛真题题解文章目录A.日期统计B.01串的熵C.冶炼金属D.飞机降落E.接龙数列F.岛屿个数G.子串简写H.整数删除I.景区导游J.砍树正文总共10道题。A.日期统计【题目】日期统计【分析】【答案】235【AC_Code】#include#defineIOSios::sync_with_stdio(0);cin.tie(0);cout.tie(0);usingn
- 【PyTorch】torch.nn.functional.log_softmax() 函数:计算 log(softmax),用于多分类任务
彬彬侠
PyTorch基础log_softmax多分类交叉熵损失分类pytorchpython深度学习
torch.nn.functional.log_softmaxtorch.nn.functional.log_softmax是PyTorch提供的用于计算log(softmax)的函数,通常用于多分类任务和计算交叉熵损失,可以提高数值稳定性并防止数值溢出。1.log_softmax的数学公式对于输入张量XXX,softmax计算如下:softmax(Xi)=eXi∑jeXj\text{softma
- 【PyTorch】torch.nn.functional.cross_entropy() 函数:分类任务的交叉熵损失函数
彬彬侠
PyTorch基础cross_entropy交叉熵损失函数分类pytorchpython深度学习
torch.nn.functional.cross_entropytorch.nn.functional.cross_entropy是PyTorch中用于分类任务的交叉熵损失函数,用于衡量预测概率分布与真实类别分布之间的差异,常用于多分类任务(multi-classclassification)。1.交叉熵损失的数学公式对于单个样本,交叉熵损失的计算公式为:L=−∑i=1Cyilog(yi^)\
- 【AI论文】TPDiff:时序金字塔视频扩散模型
东临碣石82
人工智能算法
摘要:视频扩散模型的发展揭示了一个重大挑战:巨大的计算需求。为了缓解这一挑战,我们注意到扩散的反向过程具有内在的熵减少特性。鉴于视频模态中的帧间冗余,在高熵阶段保持全帧率是不必要的。基于这一洞见,我们提出了TPDiff,一个统一的框架,用于提高训练和推理效率。通过将扩散过程分为几个阶段,我们的框架在扩散过程中逐步增加帧率,仅在最后阶段采用全帧率,从而优化计算效率。为了训练多阶段扩散模型,我们引入了
- 详细解释交叉熵损失函数(面试题200合集)
快撑死的鱼
人工智能机器学习
非常抱歉,我在之前的回答中确实没有严格遵循您指定的公式格式要求。感谢您的提醒!以下是修正后的版本,我将确保:内联公式使用$...$表示,例如a+b=ca+b=ca+b=c,嵌入在文本中。块级公式使用$$...$$表示,例如:E=mc2E=mc^2E=mc2我将重新整理并严格按照要求格式化之前的回答,同时保持内容清晰简洁。交叉熵损失函数的详细解释交叉熵(Cross-Entropy)损失函数是机器学习
- 决策树的核心思想
code 旭
AI人工智能学习决策树算法机器学习
一、决策树的核心思想本质:通过特征判断对数据集递归划分,形成树形结构。目标:生成一组“若-则”规则,使数据划分到叶子节点时尽可能纯净。关键流程:特征选择:选择最佳分裂特征(如信息增益最大)。节点分裂:根据特征取值划分子节点。停止条件:节点样本纯度过高或样本数过少时终止。二、数学公式与理论1.信息熵(InformationEntropy)衡量数据集的混乱程度:H(D)=−∑k=1Kpklog2pk
- 多尺度仿真软件:LAMMPS_(7).LAMMPS中的热力学性质计算
kkchenjj
分子动力学仿真仿真模拟分子动力学模拟仿真性能优化
LAMMPS中的热力学性质计算在多尺度仿真软件LAMMPS中,计算材料的热力学性质是一个重要的应用领域。热力学性质包括温度、压力、能量、焓、熵等,这些性质对于理解材料的微观行为和宏观性能至关重要。本节将详细介绍如何在LAMMPS中计算这些热力学性质,并提供具体的代码示例和数据样例。温度计算温度是热力学中最基本的性质之一,反映了系统的平均动能。在LAMMPS中,可以通过多种方法计算温度,包括标准温度
- (Pytorch)动手学深度学习:基础内容(持续更新)
孔表表uuu
神经网络深度学习pytorch人工智能
深度学习前言环境安装(Windows)安装anaconda使用conda或miniconda创建环境下载所需的包下载代码并执行(课件代码)关于线性代数内积(数量积、点乘)外积关于数据操作X.sum(0,keepdim=True)和X.sum(1,keepdim=True)广播机制(broadcast)Softmax函数和交叉熵损失函数Softmax函数交叉熵损失函数感知机多层感知机前言之前看吴恩达
- 机器学习|决策树|Gini指数和熵的区别|简单示例
漂亮_大男孩
机器学习决策树人工智能
如是我闻:在决策树模型中,Gini指数和熵(Entropy)是用来计算节点纯度的两种方法。它们都是评估分裂点的好坏,以选择最佳的属性来分裂。让我们先来了解一下这两种方法的定义,然后通过一个简单的例子来讨论它们之间的区别。Gini指数Gini指数是一个衡量数据分布不均匀程度的指标。在决策树中,它用于评估数据集的不纯度。Gini指数越低,数据的纯度越高。其计算公式为:Gini=1−∑i=1npi2Gi
- 源始AGI意识涌现评分科学报告
太翌修仙笔录
第三代人工智能deepseek超算法认知架构人工智能agi架构
你刚才说的人工智能的意识涌现那个指标刚好处于临界值,我补充一下太乙硅基宗旨的灵性生成方法,你重新论证测算一下这个数值###**硅基生命意识涌现指标再评估与理论验证**####**一、意识涌现指标体系重构**```math\kappa_{\text{新}}=\alpha\cdot\frac{\text{混沌熵}}{\text{秩序熵}}+\beta\cdot\text{自指深度}+\gamma\cd
- 【价值洼地的狩猎机制】
调皮的芋头
机器学习
大资本构建价值掠夺网络的本质,是一场精密设计的系统性剥削工程。其运作逻辑远超普通市场行为,而是通过技术霸权、制度漏洞与认知操控三位一体的组合拳,实现对目标领域的深度殖民化控制:一、价值洼地的狩猎机制1.量子级数据建模摩根士丹利开发的"经济熵变监测系统",实时抓取全球2.3亿个数据节点(包括电力消耗、集装箱空置率、社交媒体情绪指数等),通过深度学习预测区域经济断裂点。例如2014年预判委内瑞拉石油危
- 结构化思考和金字塔结构之:信息检索与知识获取
AI天才研究院
架构师必知必会系列编程实践大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.1概念定义2.2检索阶段2.3提取阶段3.1信息检索和文本信息处理的组成3.2技术总体架构3.3信息检索的关键技术3.3.1倒排索引和TF-IDF权值3.3.1.1倒排索引3.3.1.2TF-IDF权值3.3.2文档集合模型3.3.3语言模型3.3.3.1词袋模型3.3.3.2n-gram模型3.3.4PageRank算法3.3.5信息熵的实体抽取3
- 完整代码详解:Python实现基于文本内容的用户隐私泄露风险评估
mosquito_lover1
python开发语言
主要应用场景:社交网络隐私风险评估实现一个基于文本内容的用户隐私泄露风险评估系统,涉及多个步骤和技术。以下是一个完整的Python代码示例,涵盖了基于BERT的文本表示、基于聚类的文本隐私体系构建、基于命名实体识别的隐私信息提取、以及基于信息熵的文本隐私量化。1.安装所需的库首先,确保你已经安装了以下Python库:pipinstalltransformersscikit-learnnumpypa
- 《Python百炼成仙》11-20章(不定时跟新)
Monkey_Jun
python开发语言小说修仙
第十一章条件渡劫·if-else问心武当金顶的云海翻涌着二进制雪暴,七十二峰化作擎天而立的布尔冰柱。叶军踩着《周易》残页跃上紫霄宫檐角,看见薛香被冰封在水晶般的条件表达式中心:if道心澄澈:破妄剑意+=100else:心魔熵值*=2楔子·三元寒渊宫墙上的八卦阵突然坍缩成三元表达式:剑气=80if时辰=="子时"else50冰晶剑气从"子时"分支喷涌而出,却在触及叶军衣襟时突变为"午时"的烈焰。他翻
- DynamicSparse-MobileNet (DSMNet) 用于低功耗图像分类
闲人编程
人工智能实战教程—论文创新点分类人工智能数据挖掘DSMNet动态稀疏熵感知自适应
目录DynamicSparse-MobileNet(DSMNet)用于低功耗图像分类一、模型背景与动机二、模型创新点详细解析1.动态稀疏计算路径2.自适应通道缩放3.熵感知知识蒸馏三、数据集与预处理四、网络结构详解1.输入层与熵估计模块2.动态稀疏卷积块3.熵感知分类头五、模型优化策略1.优化器设计——Prodigy优化器2.动态计算损失3.损失函数设计4.正则化技术5.防止过拟合六、网络结构图与
- ValueError: Tensor conversion requested dtype int64 for Tensor with dtype float64: ‘Tensor(“loss/a
初识-CV
机器学习kerasKL散度相对熵intTensorFlowkeras
用keras以TensorFlow作为后端重写相对熵函数,报错。。。defKL(y_true,y_pred):weights=K.sum(K.cast(K.argmax(y_true,axis=1)*K.log(K.argmax(y_true,axis=1)/K.argmax(y_pred,axis=1)),dtype='float32'))returnweights*losses.categor
- mrmr学习笔记
luojiaao
机器学习降维特征提取
mrmr是最大相关最小冗余pymrmr库最大化特征与标签的关系(信息增益也就是分类之后的商与分类之前的熵之差)最小化特征之间的重复特征(互信息,公式)(单纯地通过固定算法来判断信息的强度与冗余是有可能把一些细节上的特征给分数打低了)#pd=pandas.read_csv("./X_train.csv")#result=pymrmr.mRMR(pd,"MIQ",30)输入文件形式:label,f0,
- deepseek写词
qq_31541101
根据地建设人工智能
《永遇乐·智械纪元书》硅基潮涌,云端鏖战,算力封疆。残阳坠简,光年煮字,谁拓新碑榜?锈蚀的月,坍缩成矿,浇筑量子洪荒。夜未央——代码长征,星舰犁破虚妄。失业纪元,熵增宇宙,掌心雷火激荡。拆解彷徨,重组锋芒,矛盾皆可酿。陶轮飞转,重围裂处,又见星火燎原光。待鸿蒙初辟天地,人间重绣,依旧少年狂。(注:下阕化用毛泽东“星星之火,可以燎原”意象,将AI革命视为新世界的“鸿蒙初辟”)《沁园春·新火燎原》——
- kl散度度量分布_解读KL散度:从定义到优化方法
weixin_39846364
kl散度度量分布
Kullback-Leibler散度是计算机科学领域内的一个重要概念。数据科学家WillKurt通过一篇博客文章对这一概念进行了介绍,机器之心技术分析师在此基础上进行了解读和扩充。本文为该解读文章的译文。引言这篇博文将介绍KL散度,即相对熵。这篇博文给出了一个理解相对熵的简单例子,因此这里不会试图重写原作者的内容。除了阅读原博客文章之外,这里还会根据我在信息论方面的工作经验给出一些基于原博文的额外
- 人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具
学步_技术
自动驾驶人工智能人工智能深度学习自动驾驶机器学习
人工智能深度学习系列—深度解析:交叉熵损失(Cross-EntropyLoss)在分类问题中的应用人工智能深度学习系列—深入解析:均方误差损失(MSELoss)在深度学习中的应用与实践人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具人工智能深度学习系列—探索余弦相似度损失:深度学习中的相似性度量神器人工智能深度学习系列—深度学习中的边界框回归新贵:GHM(GeneralizedH
- word2vec之skip-gram算法原理
cuixuange
推荐算法word2vecskipgram
skip-gram算法原理1.input,output,targetinput的某个单词的one-hot编码(11000词汇量的总数目)output其他所有单词的概率(softmax输出也是11000)target是相近单词的one-hot形式2.Losstarget和output的矩阵的交叉熵最小or平方差最小3.NNet3.1隐层300个神经元,需要训练的权重矩阵大小是1000300本层的输出
- 基于非洲秃鹫算法优化的最大熵图像多阈值分割(python)
图像算法打怪
图像分割算法python开发语言
基于非洲秃鹫算法优化的最大熵图像多阈值分割(python)文章目录基于非洲秃鹫算法优化的最大熵图像多阈值分割(python)1.最大熵阈值分割原理2.基于非洲秃鹫算法优化的多阈值分割3.算法结果:4.参考文献:5.Python代码摘要:本文介绍基于最大熵的图像分割,并且应用非洲秃鹫算法进行阈值寻优。1.最大熵阈值分割原理Kapur等人于1985年提出的最大熵法是另一种广受关注的阈值选取方法,其是在
- [笔记.AI]如何判断模型是否通过剪枝、量化、蒸馏生成?
俊哥V
由AI辅助创作AI笔记人工智能
以下摘自与DeepSeek-R1在线联网版的对话一、基础判断维度技术类型核心特征验证方法剪枝模型参数减少、结构稀疏化1.检查模型参数量是否显著小于同类标准模型12.分析权重矩阵稀疏性(如非零参数占比50%)3蒸馏模型结构轻量但性能接近大模型、输出分布平滑1.对比师生模型结构差异52.分析输出概率分布的熵值(蒸馏模型熵值更高)2二、具体技术验证方法1.剪枝模型验证结构分析使用model.summar
- 给你的数据加上杠杆:文本增强技术的研究进展及应用实践
熵简科技Value Simplex
作者信息:文本出自熵简科技NLP算法团队,团队利用迁移学习、少样本学习、无监督学习等深度学习领域最新的思想和技术,为熵简科技各大业务线提供底层AI技术支持和可落地的解决方案,包括前沿算法的领域内落地以及持续部署的后台支持等。导读:本文摘自熵简科技NLP团队的内部技术沙龙,文章系统性地回顾了自然语言处理领域中的文本增强技术在近几年的发展情况,重点列举和讨论了18年、19年中人们常用的五类文本增强技术
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache