超棒:数学速算法!!!

  速算技巧A、乘法速算 一、十位数是1的两位数相乘

  乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。

  例:15×17

  15 + 7 = 22

  5 × 7 = 35

  ---------------

  255

  即15×17 = 255

  解释:

  15×17

  =15 ×(10 + 7)

  =15 × 10 + 15 × 7

  =150 + (10 + 5)× 7

  =150 + 70 + 5 × 7

  =(150 + 70)+(5 × 7)

  为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。

  例:17 × 19

  17 + 9 = 26

  7 × 9 = 63

  连在一起就是255,即260 + 63 = 323

  二、个位是1的两位数相乘

  方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。

  例:51 × 31

  50 × 30 = 1500

  50 + 30 = 80

  ------------------

  1580

  因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。

  例:81 × 91

  80 × 90 = 7200

  80 + 90 = 170

  ------------------

  7370

  ------------------

  7371

  原理大家自己理解就可以了。

  三、十位相同个位不同的两位数相乘

  被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。

  例:43 × 46

  (43 + 6)× 40 = 1960

  3 × 6 = 18

  ----------------------

  1978

  例:89 × 87

  (89 + 7)× 80 = 7680

  9 × 7 = 63

  ----------------------

  7743

  四、首位相同,两尾数和等于10的两位数相乘

  十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。

  例:56 × 54

  (5 + 1) × 5 = 30--

  6 × 4 = 24

  ----------------------

  3024

  例: 73 × 77

  (7 + 1) × 7 = 56--

  3 × 7 = 21

  ----------------------

  5621

  例: 21 × 29

  (2 + 1) × 2 = 6--

  1 × 9 = 9

  ----------------------

  609

  “--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。

  五、首位相同,尾数和不等于10的两位数相乘

  两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。

  例:56 × 58

  5 × 5 = 25--

  (6 + 8 )× 5 = 7--

  6 × 8 = 48

  ----------------------

  3248

  得数的排序是右对齐,即向个位对齐。这个原则很重要。

  六、被乘数首尾相同,乘数首尾和是10的两位数相乘。

  乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。

  例: 66 × 37

  (3 + 1)× 6 = 24--

  6 × 7 = 42

  ----------------------

  2442

  例: 99 × 19

  (1 + 1)× 9 = 18--

  9 × 9 = 81

  ----------------------

  1881

  七、被乘数首尾和是10,乘数首尾相同的两位数相乘

  与帮助6的方法相似。两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。

  例:46 × 99

  4 × 9 + 9 = 45--

  6 × 9 = 54

  -------------------

  4554

  例:82 × 33

  8 × 3 + 3 = 27--

  2 × 3 = 6

  -------------------

  2706

  八、两首位和是10,两尾数相同的两位数相乘。

  两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。

  例:78 × 38

  7 × 3 + 8 = 29--

  8 × 8 = 64

  -------------------

  2964

  例:23 × 83

  2 × 8 + 3 = 19--

  3 × 3 = 9

  --------------------

  1909

  B、平方速算

  一、求11~19 的平方

  底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。

  例:17 × 17

  17 + 7 = 24-

  7 × 7 = 49

  ---------------

  289

  参阅乘法速算中的“十位是1 的两位相乘”

  二、个位是1 的两位数的平方

  底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。

  例:71 × 71

  7 × 7 = 49--

  7 × 2 = 14-

  -----------------

  5041

  参阅乘法速算中的“个位数是1的两位数相乘”

  三、个位是5 的两位数的平方

  十位加1 乘以十位,在得数的后面接上25。

  例:35 × 35

  (3 + 1)× 3 = 12--

  25

  ----------------------

  1225

  四、21~50 的两位数的平方

  在这个范围内有四个数字是个关键,在求25~50之间的两数的平方时,若把它们记住了,就可以很省事了。它们是:

  21 × 21 = 441

  22 × 22 = 484

  23 × 23 = 529

  24 × 24 = 576

  求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。

  例:37 × 37

  37 - 25 = 12--

  (50 - 37)^2 = 169

  ----------------------

  1369

  注意:底数减去25后,要记住在得数的后面留两个位置给十位和个位。

  例:26 × 26

  26 - 25 = 1--

  (50-26)^2 = 576

  -------------------

  676

  C、加减法

  一、补数的概念与应用

  补数的概念:补数是指从10、100、1000……中减去某一数后所剩下的数。

  例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。

  补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。

  D、除法速算

  一、某数除以5、25、125时

  1、 被除数 ÷ 5

  = 被除数 ÷ (10 ÷ 2)

  = 被除数 ÷ 10 × 2

  = 被除数 × 2 ÷ 10

  2、 被除数 ÷ 25

  = 被除数 × 4 ÷100

  = 被除数 × 2 × 2 ÷100

  3、 被除数 ÷ 125

  = 被除数 × 8 ÷100

  = 被除数 × 2 × 2 × 2 ÷100

  在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。因本人水平所限,上面的算法不一定是最好的心算法

你可能感兴趣的:(超棒:数学速算法!!!)