您可以使用
bootstrapping估计
confidence intervals.MATLAB在统计工具箱中提供
bootci功能.这是一个例子:
%# generate a random cell array of 400 sequences of varying length
%# each containing indices from 1 to 5 corresponding to ACGTE
sequences = arrayfun(@(~) randi([1 5], [1 randi([500 1000])]), 1:400, ...
'UniformOutput',false)';
%# compute transition matrix from all sequences
trans = countFcn(sequences);
%# number of bootstrap samples to draw
Nboot = 1000;
%# estimate 95% confidence interval using bootstrapping
ci = bootci(Nboot, {@countFcn, sequences}, 'alpha',0.05);
ci = permute(ci, [2 3 1]);
我们得到:
>> trans %# 5x5 transition matrix: P_hat
trans =
0.19747 0.2019 0.19849 0.2049 0.19724
0.20068 0.19959 0.19811 0.20233 0.19928
0.19841 0.19798 0.2021 0.2012 0.20031
0.20077 0.19926 0.20084 0.19988 0.19926
0.19895 0.19915 0.19963 0.20139 0.20088
和另外两个类似的矩阵,包含置信区间的下限和上限:
>> ci(:,:,1) %# CI lower bound
>> ci(:,:,2) %# CI upper bound
我使用以下函数从一组序列计算转换矩阵:
function trans = countFcn(seqs)
%# accumulate transition matrix from all sequences
trans = zeros(5,5);
for i=1:numel(seqs)
trans = trans + sparse(seqs{i}(1:end-1), seqs{i}(2:end), 1, 5,5);
end
%# normalize into proper probabilities
trans = bsxfun(@rdivide, trans, sum(trans,2));
end
作为奖励,我们可以使用bootstrp函数来获取从每个bootstrap样本计算的统计量,我们使用它来显示转换矩阵中每个条目的直方图:
%# compute multiple transition matrices using bootstrapping
stat = bootstrp(Nboot, @countFcn, sequences);
%# display histogram for each entry in the transition matrix
sub = reshape(1:5*5,5,5);
figure
for i=1:size(stat,2)
subplot(5,5,sub(i))
hist(stat(:,i))
end