PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路

PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路_第1张图片

完整代码:

import torch
import torchvision
from PIL import Image
from torch import nn

image_path = "../imgs/dog.png"
image = Image.open(image_path)
print(image)

# 因为png格式是四个通道,除了RGB三通道外,还有一个透明度通道
image = image.convert("RGB")
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
                                            torchvision.transforms.ToTensor()])
image = transform(image)
print(image.shape)

class MyNN(nn.Module):
    def __init__(self):
        super(MyNN, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 4 * 4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

model = torch.load("mynn_0.pth")
print(model)

image = torch.reshape(image,(1,3,32,32))
model.eval()

with torch.no_grad():
    output = model(image.cuda())
print(output)
print(output.argmax(1))

 采用GPU训练的模型,两种方法

(1)在CPU上加载,要从GPU映射到CPU,即把model = torch.load("mynn_9.pth")改为:

model = torch.load("mynn_9.pth",map_location=torch.device('cpu'))

(2)将image转到GPU中,即把output = model(image)改为:

output = model(image.cuda())

 

PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路_第2张图片

 预测错误的原因可能是训练次数不够多

PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路_第3张图片 改成:

model = torch.load("mynn_9.pth")

PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路_第4张图片

 

PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路_第5张图片

 PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路_第6张图片

 

 

你可能感兴趣的:(pytorch)