- deepseek免费大模型搜索工具发布
葡萄爱
LLM大模型人工智能深度学习神经网络AIGCAI编程
deepseek免费大模型搜索工具刚刚发布地址:https://chat.deepseek.com/DeepSeek"(深度求索)是一家专注于人工智能技术研究和应用的中国公司。该公司致力于开发和推广先进的AI技术,包括自然语言处理(NLP)、计算机视觉、机器学习等领域。DeepSeek的核心目标是通过AI技术推动各行业的智能化转型,提升生产效率和生活质量。DeepSeek的主要特点:自然语言处理(
- 基于深度学习的时空特征融合摔倒检测 基于图像序列分析与主成分分析(PCA)的摔倒检测
人工智能专属驿站
深度学习
基于深度学习的时空特征融合摔倒检测该方法采用卷积神经网络(CNN)与循环神经网络(RNN)相结合的方式,通过提取时空特征来进行摔倒检测。通过对视频帧序列的时空特征进行融合,能够更准确地捕捉到摔倒事件的动态变化。步骤:时空特征提取:通过卷积神经网络(CNN)提取每一帧的视频图像特征。时间信息处理:使用循环神经网络(RNN)处理视频帧的时间序列,捕捉摔倒过程中的时序信息。摔倒判定:将时空特征输入到融合
- 有趣的项目--汇总
cladel
人工智能
文章目录前言一、AI类二、前言持续记录有意思的项目,欢迎大家讨论一、AI类openglass+ollama:链接:OpenGlassAI眼镜的环境配置与实现InvidiaJetson+LLM:链接:生成式人工智能应用SenseCraftAI:链接:SenseCraftAIJetsonSeeedStudio(矽递科技)github:链接:SeeedStudioEEG2Video:TowardsDec
- 遗传算法与深度学习实战(33)——WGAN详解与实现
盼小辉丶
深度学习人工智能生成对抗网络
遗传算法与深度学习实战(33)——WGAN详解与实现0.前言1.训练生成对抗网络的挑战2.GAN优化问题2.1梯度消失2.2模式崩溃2.3无法收敛3WassersteinGAN3.1Wasserstein损失3.2使用Wasserstein损失改进DCGAN小结系列链接0.前言原始的生成对抗网络(GenerativeAdversarialNetwork,GAN)在训练过程中面临着模式坍塌和梯度消失
- 遗传算法与深度学习实战(32)——生成对抗网络详解与实现
盼小辉丶
遗传算法与深度学习实战深度学习生成对抗网络人工智能
遗传算法与深度学习实战(32)——生成对抗网络详解与实现0.前言1.生成对抗网络2.构建卷积生成对抗网络小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetworks,GAN)是一种由两个相互竞争的神经网络组成的深度学习模型,它由一个生成网络和一个判别网络组成,通过彼此之间的博弈来提高生成网络的性能。生成对抗网络使用神经网络生成与原始图像集非常相似的新图像,它在图像生
- 【Python】已解决:ERROR: Could not find a version that satisfies the requirement cv2 (from versions: none)
屿小夏
python开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 国家超算平台上线DeepSeek - R1系列模型:开启AI新征程
CodeJourney.
数据库人工智能算法人工智能
2025年初,科技圈发生了一件大事:国家超算平台上线了DeepSeek-R1系列模型。这事儿就像在科技池塘里扔了颗大石头,激起了好大的水花,对人工智能(AI)领域影响深远。一、DeepSeek-R1系列模型究竟啥来头DeepSeek-R1系列模型是DeepSeek这家公司研发的。它用了强化学习训练,推理的时候会反复思考验证,思维链能有好几万字长。在数学、代码编写和复杂逻辑推理这些方面,表现相当厉害
- (Aliyun AI ACP 04)人工智能建模流程与基础知识:深度学习、增强学习与迁移学习关键技术综述
North_D
人工智能基础知识点人工智能深度学习学习自然语言处理迁移学习python神经网络
文章目录阿里云人工智能工程师ACP认证考试知识点辅助阅读(AliyunAIACP04)人工智能建模流程与基础知识:深度学习、增强学习与迁移学习关键技术综述I.深度学习算法1️⃣前馈神经网络(FFNs)详解2️⃣卷积神经网络(CNNs)探秘II.增强学习探索3️⃣增强学习基础与决策过程4️⃣常见增强学习算法剖析III.迁移学习实践5️⃣迁移学习基本原理与应用阿里云人工智能工程师ACP认证考试知识点辅
- AI大模型探秘:核心能力与应用场景深度解析
程序员辣条
人工智能javaAI大模型大模型spring
AI大模型是什么通过概念考察的方式,拆开来了解AI大模型。AI:包含很多术语,如:模式识别、自然语言处理、神经网络、机器学习、深度学习、强化学习、人类反馈强化学习等。类比:AI是电力–吴恩达。就像电力技术,是一种通用技术,对很多设备起作用,同样的AI可以赋能各种场景。大模型:把LM比作人的大脑。大参数大规模。参数就是脑细胞,脑细胞越多通常这个人越聪明,参数越多的LM通常越智能。分类语言大模型:Ch
- 揭秘AI的智能双翼:决策式AI与生成式AI
小马不会过河
人工智能算法embeddingmicrosoft知识图谱
在人在数字化浪潮的推动下,人工智能已成为推动社会进步的关键技术之一。特别是在决策式AI与生成式AI这两个领域,它们的发展不仅加速了技术创新的步伐,也在实际应用中展现出巨大的潜力和价值。01.智能双翼:决策式AI与生成式AI决策式AI(DiscriminativeAI)定义:决策式AI,也称为判别式AI,是一种通过学习数据中的条件概率分布,对新场景进行判断、分析和预测的人工智能技术。它的设计目标是模
- 二值连接:深度神经网络的轻量级革命
步子哥
dnn人工智能神经网络
引言:深度学习的下一步是什么?深度神经网络(DeepNeuralNetworks,DNN)近年来在语音识别、图像分类和自然语言处理等领域取得了令人瞩目的成就。然而,这些突破背后的一个关键推手是计算能力的飞速提升,尤其是图形处理单元(GPU)的广泛应用。然而,随着模型规模和数据量的增长,深度学习的计算需求也在不断攀升。与此同时,移动设备和嵌入式系统的快速发展对低功耗、高效能的深度学习算法提出了更高的
- 算法问题整理(二)
分享总结快乐
算法
网络资料整理个人学习,感谢各位大神!(若侵则删)问题10:卷积-目标检测系列问题参考:40+目标检测网络架构大盘点!从基础架构ResNet到最强检测器Yolov7再到最新部署神器GhostNetV2【深度学习】YOLO检测器家族所有版本(2024最新汇总、详细介绍)_yolo各个版本-CSDN博客YOLO系列算法全家桶——YOLOv1-YOLOv9详细介绍!!-腾讯云开发者社区-腾讯云关键挑战:类
- 探秘 GitCode 上的开源项目:91pron - AI 引擎驱动的智能视频处理工具
毕艾琳
探秘GitCode上的开源项目:91pron-AI引擎驱动的智能视频处理工具去发现同类优质开源项目:https://gitcode.com/项目简介在平台上,有一个名为的开源项目,它是一个利用人工智能技术进行智能视频处理的应用。虽然项目的名称可能有些隐晦,但其核心功能却极具实用价值,特别是对于那些需要自动化处理大量视频数据的工作。技术分析1.AI模型应用91pron使用了深度学习模型,尤其是计算机
- 深入浅出之Convolutional Block Attention Module(YOLO)
浩瀚之水_csdn
#Pytorch框架YOLO目标检测专栏深度学习目标检测深度学习神经网络计算机视觉
ConvolutionalBlockAttentionModule(CBAM)是一种用于增强卷积神经网络(CNN)特征表示能力的注意力机制模块。以下是对CBAM的详细解释:一、CBAM的基本结构CBAM由两个子模块组成:通道注意力模块(ChannelAttentionModule,CAM)和空间注意力模块(SpatialAttentionModule,SAM)。这两个模块可以串联使用,以增强CNN
- 大模型技术对大数据生态链的全面革新
敏叔V587
大数据
大模型技术对大数据生态链的全面革新在数字化浪潮汹涌澎湃的当下,大数据和人工智能技术已成为推动各行业发展的关键力量。其中,大模型技术的崛起,正深刻地改变着大数据生态链的格局,为数据的处理、分析与应用带来了前所未有的变革。今天,就让我们一同深入探讨大模型技术对大数据生态链的多维度影响,并结合实际案例展开分析。一、大模型技术:重塑数据采集与整合(一)智能采集优化传统的数据采集往往依赖于预设规则和人工干预
- 深入详解人工智能机器学习算法——逻辑回归算法
猿享天开
人工智能基础知识学习人工智能机器学习算法逻辑回归
引言逻辑回归(LogisticRegression)是机器学习中一种基本而重要的分类算法。在这篇文章中,我们将深入解析逻辑回归的各个方面,包括其基础知识、数学原理、实现方法、以及应用场景。我们还将通过具体的代码示例和应用案例,帮助您全面理解逻辑回归算法。第一部分:逻辑回归的基础知识1.1什么是逻辑回归?逻辑回归是一种用于解决二分类问题的回归分析方法。尽管名字中带有“回归”,逻辑回归的目标是将预测结
- 人工智能-数据分析及特征提取思路
power-辰南
人工智能人工智能特征提取大模型机器学习
1、概况基于学生行为数据预测是否涉黄、涉黑等。2.数据分析数据分析的意义包括得到数据得直觉、发掘潜在的结构、提取重要的变量、删除异常值、检验潜在的假设和建立初步的模型。2.1数据质量分析2.1.1数据值分析查看数据类型:首先明确各字段的数据类型,例如学生标识通常为字符串类型(如学号),访问时间一般是日期时间类型,访问网址、搜索关键词等为文本类型,停留时长、访问频次等则是数值类型,而是否涉黄涉黑标签
- DeepSeek-R1:通过强化学习提升大型语言模型推理能力的探索
kaichu2
论文翻译DeepSeek
DeepSeek-R1:通过强化学习提升大型语言模型推理能力的探索在人工智能领域,大型语言模型(LLMs)的发展日新月异,其在自然语言处理和生成任务中的表现逐渐接近人类水平。然而,如何进一步提升这些模型的推理能力,使其能够更好地处理复杂的逻辑、数学和科学问题,一直是研究的热点。最近,DeepSeek-AI团队发布的DeepSeek-R1模型为这一领域带来了新的突破。本文将详细介绍DeepSeek-
- AI助力精准农业:从数据到行动的智能革命
Echo_Wish
人工智能前沿技术人工智能
AI助力精准农业:从数据到行动的智能革命农业,作为人类最古老的产业,正经历着一场前所未有的智能化变革。从传统的经验种植到现代化机械农业,再到今天的人工智能(AI)精准农业,科技的每一次跃迁都在提高农业生产效率,降低资源浪费,并增强粮食安全。AI之所以能在农业中大显身手,主要依赖于数据驱动的智能决策。通过卫星遥感、无人机、传感器、气象数据等多维度信息,AI可以帮助农民精准施肥、智能灌溉、预测病虫害,
- 智能工厂能耗管理:Python助力节能增效
Echo_Wish
Python进阶python开发语言
智能工厂能耗管理:Python助力节能增效在工业4.0时代,工厂能耗管理已成为制造企业降本增效的重要一环。传统的能耗管理方式往往依赖人工统计和经验决策,导致能源浪费严重。而借助人工智能与Python的强大能力,我们可以实现智能化、数据驱动的能耗优化方案。今天,我们就来聊聊如何利用Python构建智能工厂能耗管理系统,从数据采集、分析到优化,全面提升能源使用效率。1.为什么要智能化工厂能耗管理?1.
- 五子棋ai启发式搜索_一种快速而简单的人工智能启发式学习语言的方法
weixin_26630173
python人工智能java机器学习算法
五子棋ai启发式搜索介绍(Introduction)ThespecialthingIfoundwhenIfirststarteddivingintothefieldofArtificialIntelligencewastheinfiniteamountofparallelsbetweenhowneuralnetworkslearnandmysubjectiveexperienceofmyownin
- 大模型的底层逻辑及Transformer架构
搏博
transformer架构深度学习机器学习人工智能
一、大模型的底层逻辑1.数据驱动大模型依赖海量的数据进行训练,数据的质量和数量直接影响模型的性能。通过大量的数据,模型能够学习到丰富的模式和规律,从而更好地处理各种任务。2.深度学习架构大模型基于深度学习技术,通常采用多层神经网络进行特征学习与抽象。其中,Transformer架构是目前主流的大模型架构,它通过自注意力机制和前馈神经网络来处理输入数据。这种架构能够高效地处理序列数据,如文本。3.自
- 大语言模型轻量化:知识蒸馏的范式迁移与工程实践
LucianaiB
语言模型人工智能自然语言处理python
大语言模型轻量化:知识蒸馏的范式迁移与工程实践嗨,我是LucianaiB!总有人间一两风,填我十万八千梦。路漫漫其修远兮,吾将上下而求索。摘要在大型语言模型(LLM)主导人工智能发展的当下,模型参数量与推理成本的指数级增长已成为制约技术落地的核心瓶颈。本文提出基于动态知识蒸馏的轻量化范式,通过引入注意力迁移机制与分层蒸馏策略,在保持模型语义理解能力的同时实现参数效率的显著提升。实验表明,该方法在G
- 【深度学习】权重衰减
熙曦Sakura
深度学习深度学习人工智能
权重衰减前一节我们描述了过拟合的问题,本节我们将介绍一些正则化模型的技术。我们总是可以通过去收集更多的训练数据来缓解过拟合。但这可能成本很高,耗时颇多,或者完全超出我们的控制,因而在短期内不可能做到。假设我们已经拥有尽可能多的高质量数据,我们便可以将重点放在正则化技术上。回想一下,在多项式回归的例子中,我们可以通过调整拟合多项式的阶数来限制模型的容量。实际上,限制特征的数量是缓解过拟合的一种常用技
- 智能运维分析决策系统:赋能数字化转型的新引擎
我的运维人生
运维运维开发技术共享
智能运维分析决策系统:赋能数字化转型的新引擎在数字化转型的浪潮中,企业对于高效、智能的运维管理需求日益迫切。传统的运维模式往往依赖于人工经验,难以应对大规模、复杂多变的IT环境。智能运维分析决策系统(AIOps,ArtificialIntelligenceforITOperations)应运而生,它利用大数据、机器学习、人工智能等技术,实现了运维的自动化、智能化,极大地提升了运维效率与质量,为企业
- AIGC从入门到实战:基于大模型的人工智能应用的涌现和爆发
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的新纪元:AIGC的崛起近年来,人工智能(AI)领域经历了前所未有的发展,其中AIGC(AIGeneratedContent,人工智能生成内容)的崛起尤为引人注目。AIGC借助深度学习模型,能够生成逼真的图像、视频、音频、文本等内容,为人类的创造力和生产力带来了革命性的改变。1.2大模型:AIGC的基石AIGC的核心驱动力在于大规模预训练模型(简称“大模型”)。这些模型拥
- 大语言模型应用指南:工作记忆与长短期记忆
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1问题的由来在人工智能的发展过程中,语言模型的研究一直是重要的一环。早期的语言模型,如N-gram,虽然在一定程度上能够捕捉语言的统计规律,但其无法有效处理语言中的长距离依赖性和复杂结构。这主要是因为N-gram模型只能捕捉到词汇之间的局部依赖关系,而无法捕捉到更长范围内的语义信息。1.2研究现状近年来,随着深度学习技术的发展,基于神经网络的语言模型逐渐崭露头角。其中,长短期记忆网
- 【 书生·浦语大模型实战营】学习笔记(一):全链路开源体系介绍
GoAI
深入浅出LLM深入浅出AI大模型书生人工智能LLMllama
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接【书生·浦语大模
- RK3568、RK3588、RK3358性能对比
给生活加糖!
嵌入式开发知识linux开发板
RK3568、RK3588和RK3358是由Rockchip(瑞芯微电子)推出的不同系列的处理器,广泛应用于嵌入式系统、物联网设备、智能家居、安防设备等领域。以下是它们的性能介绍及差异性对比:1.RK3568CPU:四核ARMCortex-A55架构,主频高达2.0GHz。GPU:Mali-G522EE,支持OpenGLES3.2、Vulkan1.1。NPU:内置0.8TOPs的神经网络处理单元,
- AI模型调度架构全解析:实现任务与模型的智能匹配
大模型玩家
人工智能架构学习方法产品经理经验分享算法ai
在人工智能技术高速发展的今天,AI大模型的应用范围不断拓宽。从自然语言处理到技术研发、从教育场景到企业服务,AI大模型正在逐步改变我们的工作和生活。然而,随着需求的多样化和任务复杂性的增加,如何高效地调用和管理多个AI大模型,成为了企业和开发者面临的一大挑战。本文将深入剖析基于Ollama的AI大模型问答调度架构,探讨其核心设计、功能亮点,以及在业务场景中的应用优势,帮助您全面了解这一系统如何在复
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟