- flume系列之:flume落cos
快乐骑行^_^
日常分享专栏flume系列
flume系列之:flume落cos一、参考文章二、安装cosjar包三、添加hadoop-cos的相关配置四、flume环境添加hadoop类路径五、使用cos路径六、启动/重启flume一、参考文章Kafka数据通过Flume存储到HDFS或COSflumetocos使用指南二、安装cosjar包将对应hadoop版本的hadoop-cos的jar包(hadoop-cos-{hadoop.ve
- Apache Hive
_从头再来_
大数据
一、ApacheHive简介官方网址:https://hive.apache.org/TheApacheHive™datawarehousesoftwarefacilitatesreading,writing,andmanaginglargedatasetsresidingindistributedstorageusingSQL.Structurecanbeprojectedontodataalr
- tar命令详解:解压与压缩的技巧
wx_tangjinjinwx
tarlinux
tar命令详解:解压与压缩的技巧大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在日常的系统管理和文件处理过程中,tar命令是一个非常重要的工具。它不仅用于压缩文件,还可以用于解压缩。本文将详细介绍tar命令的用法,包括压缩和解压缩的技巧。一、tar命令概述tar(tapearchive)是一个用于打包和压缩文件的命令行工具。它可以将多个文件和目录打包成一个文件,也可
- Hadoop 和 Spark 的内存管理机制分析
王子良.
经验分享hadoopspark大数据
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
- 大数据学习(五):如何使用 Livy提交spark批量任务--转载
zuoseve01
livy
Livy是一个开源的REST接口,用于与Spark进行交互,它同时支持提交执行代码段和完整的程序。Livy封装了spark-submit并支持远端执行。启动服务器执行以下命令,启动livy服务器。./bin/livy-server这里假设spark使用yarn模式,所以所有文件路径都默认位于HDFS中。如果是本地开发模式的话,直接使用本地文件即可(注意必须配置livy.conf文件,设置livy.
- Spark Livy 指南及livy部署访问实践
house.zhang
大数据-Spark大数据
背景:ApacheSpark是一个比较流行的大数据框架、广泛运用于数据处理、数据分析、机器学习中,它提供了两种方式进行数据处理,一是交互式处理:比如用户使用spark-shell,编写交互式代码编译成spark作业提交到集群上去执行;二是批处理,通过spark-submit提交打包好的spark应用jar到集群中进行执行。这两种运行方式都需要安装spark客户端配置好yarn集群信息,并打通集群网
- 大数据学习(四):Livy的安装配置及pyspark的会话执行
猪笨是念来过倒
大数据pyspark
一个基于Spark的开源REST服务,它能够通过REST的方式将代码片段或是序列化的二进制代码提交到Spark集群中去执行。它提供了以下这些基本功能:提交Scala、Python或是R代码片段到远端的Spark集群上执行;提交Java、Scala、Python所编写的Spark作业到远端的Spark集群上执行;提交批处理应用在集群中运行。从Livy所提供的基本功能可以看到Livy涵盖了原生Spar
- 探索数据科学新边界:Apache Livy 开源项目详解
毕艾琳
探索数据科学新边界:ApacheLivy开源项目详解incubator-livyApacheLivyisanopensourceRESTinterfaceforinteractingwithApacheSparkfromanywhere.项目地址:https://gitcode.com/gh_mirrors/in/incubator-livyApacheLivy是一个为ApacheSpark提供的
- SS00023.PBpositions——|Hadoop&PB级离线数仓.v02|——|Griffin.v02|Griffin部署|
yanqi_vip
数据库hadoophive大数据hdfs
一、Griffin编译准备###---软件解压缩[root@hadoop02~]#ls/opt/yanqi/software/griffin-griffin-0.5.0.zip/opt/yanqi/software/griffin-griffin-0.5.0.zip[root@hadoop02~]#cd/opt/yanqi/software/[root@hadoop02software]#unzi
- 在线格式化XML
weixin_34250709
有时候要格式化一下XML,有没有好的小工具,这里有一个在线版本,好使!http://xmlindent.com/转载于:https://www.cnblogs.com/DotNetNuke/archive/2010/07/14/1777096.html
- 解决 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform...警告
克里斯蒂亚诺罗纳尔多阿维罗
hadoop
这个警告意味着Hadoop在加载本地本机库时遇到了问题。通常情况下,Hadoop会尝试加载本地的本机库以提高性能,但是如果找不到适合你的操作系统和架构的本地库,它会退而使用内置的Java类来模拟所需的功能。虽然这个警告会影响Hadoop的性能,但它并不会导致Hadoop无法正常工作。你仍然可以使用Hadoop,但可能会遇到性能上的损失。解决方法:在Hadoop中,配置'java.library.p
- 大数据公司 Databricks 详解
Bj陈默
大数据
Databricks是一家在大数据和人工智能领域具有重要影响力的美国企业软件公司,以下是关于它的详细技术解析:1.起源与背景:Databricks成立于2013年,由来自加州大学伯克利分校AMP实验室的Spark大数据处理系统的多位创始人联合创立,包括AliGhodsi、AndyKonwinski、IonStoica、PatrickWendell、ReynoldXin、MateiZaharia、A
- 全面解读 Databricks:从架构、引擎到优化策略
克里斯蒂亚诺罗纳尔多阿维罗
架构spark大数据
导语:Databricks是一家由ApacheSpark创始团队成员创立的公司,同时也是一个统一分析平台,帮助企业构建数据湖与数据仓库一体化(Lakehouse)的架构。在Databricks平台上,数据工程、数据科学与数据分析团队能够协作使用Spark、DeltaLake、MLflow等工具高效处理数据与构建机器学习应用。本文将深入介绍Databricks的平台概念、架构特点、优化机制、功能特性
- Hive小文件合并
云掣YUNCHE
hivehadoop数据仓库
作者:振鹭一、参数配置:在Map输入的时候,把小文件合并。--每个Map最大输入大小,决定合并后的文件数setmapred.max.split.size=256000000;--一个节点上split的至少的大小,决定了多个datanode上的文件是否需要合并setmapred.min.split.size.per.node=100000000;--一个交换机下split的至少的大小,决定了多个交换
- hive小文件合并机制_hive小文件的问题弊端以及合并
做生活的创作者
hive小文件合并机制
小文件的弊端1、HDFS中每个文件的元数据信息,包括位置大小分块信息等,都保存在NN内存中,在小文件数较多的情况下,会造成占用大量内存空间,导致NN性能下降;2、在读取小文件多的目录时,MR会产生更多map数,造成GC频繁,浪费集群资源;3、现在大数据平台文件总数超过30亿,单个NS文件数超过4亿的时候,读写性能会急剧下降,影响到所有读写该NS的任务性能;4、如果队列限制最大map数是20000,
- 数仓建模(五)选择数仓技术栈:Hive & ClickHouse & 其它
昊昊该干饭了
数仓建模大数据hiveclickhousehadoop
在大数据技术的飞速发展下,数据仓库(DataWarehouse,简称数仓)成为企业处理和分析海量数据的核心工具。市场上主流数仓技术栈丰富,如Hive、ClickHouse、Druid、Greenplum等,对于初学者而言,选择合适的技术栈是一项挑战。本文将详细解析Hive、ClickHouse及其他数仓技术,帮助读者根据场景需求选择最佳工具。目录一、数据仓库的基础概念和技术选型原则1.1什么是数据
- Hive--HiveServer2 命令行代码连接、Hive常用命令、自定义UDF函数、排序
XK&RM
Hivehivehiveserver2udfjava
目录1Hive--HiveServer2命令行代码连接1.1配置HiveServer2WEB参数1.2开启HiveServer21.3使用Beeline连接HiveServer21.4使用代码查询HiveServer21.5使用DBeaver连接Hive2Hive--Hive常用命令2.1Hive命令2.2HiveShell命令3Hive--自定义UDF函数(User-DefinedFunctio
- Hive 数据类型全解析:大数据开发者的实用指南
大鳥
sqlhive数据仓库
在大数据处理领域,Hive作为一款基于Hadoop的数据仓库工具,被广泛应用于数据的存储、查询和分析。而理解Hive的数据类型是有效使用Hive的基础,本文将深入探讨Hive的数据类型,帮助大家更好地掌握Hive的使用。Hive数据类型概述Hive支持多种数据类型,主要可分为数值类型、日期/时间类型、字符类型、Misc类型以及复杂类型。这些数据类型为存储和处理各种不同格式的数据提供了有力的支持。以
- Apache Hive--排序函数解析
大鳥
apachehivehadoop
在大数据处理与分析中,ApacheHive是一个至关重要的数据仓库工具。其丰富的函数库为数据处理提供了诸多便利,排序函数便是其中一类非常实用的工具。通过排序函数,我们能够在查询结果集中为每一行数据分配一个排名值,这对于数据分析、报表生成等工作具有重要意义。本文将深入探讨ApacheHive中的排序函数,通过具体的HQL代码和数据实例进行说明,并阐述它们之间的区别。0.排序函数:ORDER、SORT
- Java 大视界 -- 解锁 Java 与 Hadoop HDFS 交互的高效编程之道(二)
青云交
大数据新视界Java大视界HDFSJava流代码示例性能优化读写操作大数据Hadoopjava
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 大数据新视界 -- Hive 数据仓库设计的优化原则(2 - 16 - 4)
青云交
大数据新视界#Hive之道Hive数据仓库优化原则数据分区存储格式查询优化B树索引查询性能大数据
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- Yarn工作机制?思维导图 代码示例(java 架构)
用心去追梦
java架构开发语言
YARN工作机制YARN(YetAnotherResourceNegotiator)是Hadoop生态系统中的资源管理和调度框架,它负责管理集群中的所有资源,并为应用程序提供调度服务。以下是关于YARN工作机制的详细介绍:YARN架构组件ResourceManager(RM):管理整个集群的资源分配。负责启动和监控ApplicationMaster。NodeManager(NM):每个节点上的代理
- 使用 Hadoop 实现大数据的高效存储与查询
王子良.
经验分享大数据hadoop分布式
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
- Spark 源码分析(一) SparkRpc中序列化与反序列化Serializer的抽象类解读 (正在更新中~)别人能写出来的,你也能行!多学习别人的思路,形成自己的思路,高薪工作奔你而来!
小白的大数据历程
Spark源码解析开发语言spark大数据分布式scala
后一篇链接在这接上一章请先看解读序列化抽象类第一部分(这是一个链接)目录接上一章请先看解读序列化抽象类第一部分2.Java序列化实现类JavaSerializer(1)JavaSerializationStream类代码实际例子1:序列化(2)JavaDeserializationStream代码实际例子2:反序列化Spark源码下类图在学习过程中,抓住主要问题,请思考问题为什么Kryo序列化更加
- Spark 源码分析(一) SparkRpc中序列化与反序列化Serializer的抽象类解读 (java序列化部分完结,正在更新RpcEnv部分~)
小白的大数据历程
Spark源码解析sparkjavapython
目录(3)JavaSerializerInstance定义了一个Java序列化实例(1)构造方法参数(2)方法1:serializeStream(3)方法2:deserializeStreamdefaultClassLoader(4)方法3:deserializeStreamloader(5)方法4:serialize(6)方法5:deserializeloader(7)方法6:deseriali
- ORACLE与SQL SERVER的区别
nanzhuhe
文章笔记数据库Oracle
ORACLE与SQLSERVER的区别转载自:https://www.cnblogs.com/chuncn/archive/2009/01/28/1381262.html体系结构ORACLE的文件体系结构为:数据文件.DBF(真实数据)日志文件.RDO控制文件.CTL参数文件.ORASQLSERVER的文件体系结构为:.MDF(数据字典).NDF(数据文件).LDF(日志文件)ORACLE存储结构
- hdfs和hive对于小文件的处理方案
二进制_博客
大数据
一、hdfs如何处理小文件小文件问题的危害小文件问题对HDFS的性能和稳定性产生显著影响,主要包括:占用过多的存储空间:每个小文件都会占用一个独立的Block,导致存储资源的浪费。降低数据处理效率:HDFS是为处理大文件而设计的,小文件会导致大量的Map任务启动,增加处理时间和资源消耗。NameNode内存压力增大:NameNode需要维护所有文件和目录的元数据信息,小文件过多会导致NameNod
- hive 创建访问用户_Hive权限控制和超级管理员的实现
weixin_39826089
hive创建访问用户
Hive权限控制Hive权限机制:Hive从0.10可以通过元数据控制权限。但是Hive的权限控制并不是完全安全的。基本的授权方案的目的是防止用户不小心做了不合适的事情。先决条件:为了使用Hive的授权机制,有两个参数必须在hive-site.xml中设置:hive.security.authorization.enabledtrueenableordisablethehiveclientauth
- hive表级权限控制_Hive权限管理
weixin_39769091
hive表级权限控制
最近遇到一个hive权限的问题,先简单记录一下,目前自己的理解不一定对,后续根据自己的理解程度更新一、hive用户的概念hive本身没有创建用户的命令,hive的用户就是Linux用户,若当前是用mr用户输入hive,进入hive的shell,则当前hive的用户为mr。hive本身不提供用户和用户的管理,只做权限控制。所以在实际的生产中,容易造成创表和使用表的用户不统一的情况,针对该情况可以使用
- HIVE的权限控制和超级管理员的实现
weixin_34364071
大数据数据库java
Hive用户权限管理从remote部署hive和mysql元数据表字典看,已经明确hive是通过存储在元数据中的信息来管理用户权限。现在重点是Hive怎么管理用户权限。首先要回答的是用户是怎么来的,发现hive有创建角色的命令,但没有创建用户的命令,显然Hive的用户不是在mysql中创建的。在回答这个问题之前,先初步了解下Hive的权限管理机制。Hive用户组和用户即Linux用户组和用户,和h
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s