高等数学:线性代数-第二章

文章目录

  • 第2章 矩阵及其运算
    • 2.1 线性方程组和矩阵
    • 2.2 矩阵的运算
    • 2.3 逆矩阵
    • 2.4 Cramer法则

第2章 矩阵及其运算

2.1 线性方程组和矩阵

n \bm{n} n 元线性方程组 设有 n 个未知数 m 个方程的线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2} \\ \cdots\cdots\cdots\cdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m} \\ \end{cases} \\ a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2⋯⋯⋯⋯am1x1+am2x2++amnxn=bm
当常数项 b i b_{i} bi 不全为零时,称该方程组为n 元非齐次线性方程组,当 b i b_{i} bi 全为零时,称该方程组为n 元齐次线性方程组。

矩阵 由 m × n m \times n m×n 个数 a i j a_{ij} aij 排成的 m 行 n 列的数表
a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{matrix} \\ a11a21am1a12a22am2a1na2namn
称为 m × n m \times n m×n矩阵,记作
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) \bm{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix} \\ A= a11a21am1a12a22am2a1na2namn
特别地,当 m = n 时,该矩阵叫做n 阶方阵。

增广矩阵 对于非齐次线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2} \\ \cdots\cdots\cdots\cdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m} \\ \end{cases} \\ a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2⋯⋯⋯⋯am1x1+am2x2++amnxn=bm
它的系数矩阵、未知数矩阵和常数项矩阵分别如下:
A = ( a i j ) m × n x = ( x 1 x 2 ⋯ x n ) b = ( b 1 b 2 ⋯ b m ) \begin{align} &\bm{A} = (a_{ij})_{m \times n} \\ &\bm{x} = \begin{pmatrix} x_{1} & x_{2} & \cdots & x_{n} \\ \end{pmatrix} \\ &\bm{b} = \begin{pmatrix} b_{1} & b_{2} & \cdots & b_{m} \\ \end{pmatrix} \\ \end{align} \\ A=(aij)m×nx=(x1x2xn)b=(b1b2bm)
它的增广矩阵定义为
B = ( A b ) = ( a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋱ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m ) \bm{B} = ( \begin{array}{c|c} \bm{A} & \bm{b} \end{array} ) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_{1} \\ a_{21} & a_{22} & \cdots & a_{2n} & b_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_{m} \\ \end{pmatrix} \\ B=(Ab)= a11a21am1a12a22am2a1na2namnb1b2bm
对角矩阵 方阵

( λ 1 λ 2 ⋱ λ n ) \begin{pmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \\ \end{pmatrix} \\ λ1λ2λn
叫做对角矩阵,简称对角阵,记作 d i a g ( λ 1 λ 2 ⋯ λ n ) \mathrm{diag}(\begin{array}{ccc} \lambda_{1} & \lambda_{2} & \cdots & \lambda_{n} \end{array}) diag(λ1λ2λn) .

单位矩阵 对角矩阵 d i a g ( 1 1 ⋯ 1 ) \mathrm{diag}(\begin{array}{ccc} 1 & 1 & \cdots & 1 \end{array}) diag(111) 叫做 n 阶单位矩阵,简称单位阵,记作 E n \bm{E}_{n} En .

2.2 矩阵的运算

矩阵加法
A + B = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) + ( b 11 b 12 ⋯ b 1 n b 21 b 22 ⋯ b 2 n ⋮ ⋮ ⋱ ⋮ b m 1 b m 2 ⋯ b m n ) = ( a 11 + b 11 a 12 + b 12 ⋯ a 1 n + b 1 n a 21 + b 21 a 22 + b 22 ⋯ a 2 n + b 2 n ⋮ ⋮ ⋱ ⋮ a m 1 + b m 1 a m 2 + b m 2 ⋯ a m n + b m n ) \begin{align} \bm{A} + \bm{B} &= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \\ \end{pmatrix} \\ &= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \\ \end{pmatrix} \\ \end{align} \\ A+B= a11a21am1a12a22am2a1na2namn + b11b21bm1b12b22bm2b1nb2nbmn = a11+b11a21+b21am1+bm1a12+b12a22+b22am2+bm2a1n+b1na2n+b2namn+bmn
矩阵加法满足:
A + B = B + A ( A + B ) + C = A + ( B + C ) \bm{A} + \bm{B} = \bm{B} + \bm{A} (\bm{A} + \bm{B}) + \bm{C} = \bm{A} + (\bm{B} + \bm{C}) A+B=B+A(A+B)+C=A+(B+C)
矩阵数乘
c A = c ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) = ( c a 11 c a 12 ⋯ c a 1 n c a 21 c a 22 ⋯ c a 2 n ⋮ ⋮ ⋱ ⋮ c a m 1 c a m 2 ⋯ c a m n ) \begin{align} c\bm{A} &= c \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix} \\ &= \begin{pmatrix} ca_{11} & ca_{12} & \cdots & ca_{1n} \\ ca_{21} & ca_{22} & \cdots & ca_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{m1} & ca_{m2} & \cdots & ca_{mn} \\ \end{pmatrix} \\ \end{align} \\ cA=c a11a21am1a12a22am2a1na2namn = ca11ca21cam1ca12ca22cam2ca1nca2ncamn
矩阵数乘满足:
c A = A c ( λ μ ) A = λ ( μ A ) ( λ + μ ) A = λ A + μ A λ ( A + B ) = λ A + λ B c\bm{A} = \bm{A}c (\lambda\mu)\bm{A} = \lambda(\mu\bm{A}) (\lambda + \mu)\bm{A} = \lambda\bm{A} + \mu\bm{A} \lambda(\bm{A} + \bm{B})=\lambda\bm{A} + \lambda\bm{B} cA=Ac(λμ)A=λ(μA)(λ+μ)A=λA+μAλ(A+B)=λA+λB
矩阵乘法 对于 m × s m \times s m×s矩阵 A \bm{A} A s × n s \times n s×n矩阵 B \bm{B} B ,它们的乘法定义为 C = A B = ( c i j ) m × n \bm{C} = \bm{A}\bm{B} = (c_{ij})_{m \times n} C=AB=(cij)m×n ,且满足
c i j = ∑ k = 1 s a i k b k j      ( i ∈ Z ≤ m , j ∈ Z ≤ n ) c_{ij} = \sum_{k = 1}^{s}a_{ik}b_{kj} ~~~~ (i \in \mathbb{Z} \leq m, j \in \mathbb{Z} \leq n) \\ cij=k=1saikbkj    (iZm,jZn)
矩阵乘法满足:
( A B ) C = A ( B C ) c ( A B ) = ( c A ) B = A ( c B ) A ( B + C ) = A B + A C ( B + C ) A = B A + C A (\bm{A}\bm{B})\bm{C} = \bm{A}(\bm{B}\bm{C}) c(\bm{A}\bm{B}) = (c\bm{A})\bm{B} = \bm{A}(c\bm{B}) \bm{A}(\bm{B} + \bm{C}) = \bm{A}\bm{B} + \bm{A}\bm{C} (\bm{B} + \bm{C})\bm{A} = \bm{B}\bm{A} + \bm{C}\bm{A} (AB)C=A(BC)c(AB)=(cA)B=A(cB)A(B+C)=AB+AC(B+C)A=BA+CA
需要注意的是,
A B ≠ B A      ( B ≠ E ) . \bm{A}\bm{B} \ne \bm{B}\bm{A} ~~~~ (\bm{B} \ne \bm{E}) . AB=BA    (B=E).
矩阵转置 矩阵 A = ( a i j ) m × n \bm{A} = (a_{ij})_{m \times n} A=(aij)m×n的转置矩阵记作 A T \bm{A}^\mathrm{T} AT ,且满足
A T = ( a j i ) n × m \bm{A}^\mathrm{T} = (a_{ji})_{n \times m} \\ AT=(aji)n×m
矩阵转置满足:
( A T ) T = A ( A + B ) T = A T + B T ( λ A ) T = λ A T ( A B ) T = B T A T (\bm{A}^{T})^{T} = \bm{A} (\bm{A} + \bm{B})^\mathrm{T} = \bm{A}^\mathrm{T} + \bm{B}^\mathrm{T} (\lambda \bm{A})^\mathrm{T} = \lambda\bm{A}^\mathrm{T} (\bm{A}\bm{B})^\mathrm{T} =\bm{B}^\mathrm{T}\bm{A}^\mathrm{T} (AT)T=A(A+B)T=AT+BT(λA)T=λAT(AB)T=BTAT
方阵的行列式 由 n 阶方阵 A \bm{A} A的元素所构成的行列式,称为方阵 A \pmb{A} A 的行列式,记作 det ⁡ A \det\bm{A} detA ∣ A ∣ | \bm{A} | A

方阵的行列式满足:
∣ A T ∣ = ∣ A ∣ ∣ λ A ∣ = λ n ∣ A ∣ | \bm{A}^\mathrm{T} | = | \bm{A} | | \lambda\bm{A} | = \lambda^{n} | \bm{A} | AT=A∣∣λA=λnA
其中 n 为矩阵 A \bm{A} A的阶数
∣ A B ∣ = ∣ A ∣ ∣ B ∣ | \pmb{A}\bm{B} | = | \pmb{A} || \bm{B} | AB=A∣∣B

2.3 逆矩阵

伴随矩阵 行列式 | \bm{A} | 的各个元素的代数余子式 A_{ij} 所构成的如下的矩阵
A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋱ ⋮ A 1 n A 2 n ⋯ A n n ) \bm{A}^{*} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \\ \end{pmatrix} \\ A= A11A12A1nA21A22A2nAn1An2Ann
称为矩阵 A \bm{A} A的伴随矩阵,简称伴随阵,记作 A ∗ \bm{A}^{*} A

矩阵 A \bm{A} A和它的伴随矩阵 A ∗ \bm{A}^{*} A 满足
A A ∗ = A ∗ A = ∣ A ∣ E \bm{A}\bm{A}^{*}=\bm{A}^{*}\bm{A}=|\bm{A}|\bm{E} \\ AA=AA=AE
逆矩阵 对于 n 阶矩阵 A \bm{A} A,如果有一个 n 阶矩阵 B \bm{B} B ,使得
A B = B A = E \bm{A}\bm{B} = \bm{B}\bm{A} = \bm{E} \\ AB=BA=E
则说矩阵 A \bm{A} A是可逆的,并把矩阵 B \bm{B} B称为矩阵 A \bm{A} A的逆矩阵,简称逆阵,记作 A − 1 \bm{A}^{-1} A1.

如果矩阵 A \bm{A} A是可逆的,那么 A \bm{A} A 的逆矩阵是惟一的。

矩阵 A \bm{A} A 可逆的充分必要条件是 ∣ A ∣ ≠ 0 | \bm{A} | \ne 0 A=0 。若 ∣ A ∣ ≠ 0 | \bm{A} | \ne 0 A=0,则
A − 1 = 1 ∣ A ∣ A ∗ \bm{A}^{-1} = \frac{1}{| \bm{A} |}\bm{A}^{*} \\ A1=A1A
逆矩阵满足:
( A − 1 ) − 1 = A ( λ A ) − 1 = λ − 1 A − 1 (\bm{A}^{-1})^{-1} = \bm{A} (\lambda \bm{A})^{-1} = \lambda^{-1}\bm{A}^{-1} (A1)1=A(λA)1=λ1A1
A \bm{A} A B \bm{B} B 为同阶矩阵且均可逆,则
( A B ) − 1 = B − 1 A − 1 (\bm{A}\bm{B})^{-1} = \bm{B}^{-1}\bm{A}^{-1} (AB)1=B1A1
奇异矩阵 不可逆矩阵叫做奇异矩阵。

非奇异矩阵 可逆矩阵叫做非奇异矩阵。

2.4 Cramer法则

Cramer法则 如果线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ = b 1 a 21 x 1 + a 22 x 2 + ⋯ = b 2 ⋯ ⋯ ⋯ ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ = b n \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots = b_{2} \\ \cdots\cdots\cdots\cdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots = b_{n} \\ \end{cases} \\ a11x1+a12x2+=b1a21x1+a22x2+=b2⋯⋯⋯⋯an1x1+an2x2+=bn
的系数矩阵 A 的行列式不等于零,即
∣ A ∣ = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a n 1 ⋯ a n n ∣ ≠ 0 \left\lvert A \right\rvert = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \\ \end{vmatrix} \ne 0 \\ A= a11an1a1nann =0
则该方程组有惟一解
x i = ∣ A i ∣ ∣ A ∣ x_{i} = \frac{\left\lvert A_{i} \right\rvert}{\left\lvert A \right\rvert} \\ xi=AAi
其中
A i = ( a 11 ⋯ a 1 , i − 1 b 1 a 1 , i + 1 ⋯ a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ a n , i − 1 b n a n , i + 1 ⋯ a n n ) A_{i} = \begin{pmatrix} a_{11} & \cdots & a_{1, i - 1} & b_{1} & a_{1, i + 1} & \cdots & a_{1n} \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n, i - 1} & b_{n} & a_{n, i + 1} & \cdots & a_{nn} \\ \end{pmatrix} \\ Ai= a11an1a1,i1an,i1b1bna1,i+1an,i+1a1nann

你可能感兴趣的:(#,线性代数,高等数学,线性代数,机器学习,人工智能)