- 通过 Azure OpenAI 服务使用 GPT-35-Turbo and GPT-4(win版)
小霖同学onism
Multi-agentazuregpt-3flask
官方文档AzureOpenAI是微软提供的一项云服务,旨在将OpenAI的先进人工智能模型与Azure的基础设施和服务相结合。通过AzureOpenAI,开发者和企业可以访问OpenAI的各种模型,如GPT-3、Codex和DALL-E等,并将其集成到自己的应用程序和服务中。调用方式API调用:用户可以通过HTTP请求来调用AzureOpenAI提供的RESTAPI。请求中需要包含API密钥进行身
- 详述Python环境下配置AI大模型Qwen-72B的步骤
Play_Sai
#Python开发pythonAI大模型人工智能
随着人工智能技术的发展,大规模预训练模型如Qwen-72B等逐渐成为研究和应用的重点。本篇博客旨在提供一份详细的指南,帮助Python开发者们在自己的环境中顺利配置并使用Qwen-72B大模型。请注意:由于Qwen-72B这一模型目前并未公开存在,所以以下内容仅为假设性描述,实际上你需要替换为你想要配置的真实存在的大模型,例如GPT-3、BERT等。一、环境准备1.安装必要的库首先确保你已经安装了
- 洞悉LangChain:LangChain工程化设计,从API到智能Agent的全面探索
汀、人工智能
AIAgentLLM技术汇总langchain人工智能自然语言处理大模型AgentLangGraphAIAgent
洞悉LangChain:LangChain工程化设计,从API到智能Agent的全面探索1.LangChain简介LangChain是2022年10月底,由哈佛大学的HarrisonChase发起的基于开源大语言模型的AI工程开发框架。当然也可以问一下AI:通义千问2.5:LangChain是一个开源框架,专注于简化开发者利用大型语言模型(LLM)创建应用程序的过程。这些大型语言模型,如GPT-3
- 100天精通Python丨黑科技篇 —— 21、大语言模型_100天精通python快速入门到黑科技
前端收割机
程序员python科技语言模型
ChatGPT是OpenAI推出的一种基于GPT-3/4的聊天机器人。chatgpt的颠覆性影响主要体现在提高语言交流的便捷性、个性化服务、自动化客服和教育娱乐等方面,这些应用可以为用户带来更多的便利和乐趣,同时也为企业提供了更多的服务和商机。本文收录于《100天精通Python专栏-快速入门到黑科技》,是由CSDN内容合伙人丨全站排名Top4的硬核博主不吃西红柿倾力打造,分基础知识篇和黑科技应用
- 一口气了解大模型相关通识,基础笔记!
AI小白熊
笔记数据库架构面试职场和发展transformerai
一、大模型生态有哪些语言类大模型:GPT-3、GPT-3.5、GPT-4系列模型。并且,OpenAl在训练GPT-3的同时训练了参数不同、复杂度各不相同的A、B、C、D四项大模型(基座模型),用于不同场景的应用;其中,A、B、C、D模型的全称分别是ada、babbage、curie(居里)和davinci(达芬奇),四个模型并不是GPT-3的微调模型,而是独立训练的四个模型;四个模型的参数规模和复
- Chat Gpt我们自己造出的“外星人”
蔡昱
最近都在谈论ChatGpt,正好我在书店看书时,再次读到《人类简史》,看到他的序言是这么写的:这段文字看起来,语句通顺、逻辑合理对吧,这就是GPT-3写的,他和ChatGpt有共同的底层技术,只是运用侧重不一样,ChatGpt更专注于聊天和对话。对于这篇序言作者尤瓦尔是这么说的:这是一个强大的人工智能系统按指令模仿我的写作风格写的。GPT-3接到指令,要它为《人类简史》出版10周年写一篇新序,于是
- 【LLM大模型】24年最新大语言模型新书!这本LLM大模型黑书你一定要学(附PDF)
会AIGC的小孩
语言模型pdf人工智能大数据大模型自然语言处理ui
今天给大家推荐一本丹尼斯·罗斯曼(DenisRothman)编写的关于大语言模型(LLM)权威教程基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理>!Google工程总监AntonioGulli作序,这含金量不用多说,在这里给大家强烈推荐一下这本黑书,下面直接开始介绍!这本书犹如一道闪电,照亮了我在AI领域前行的道路。它不仅仅是一本书,更是一把钥匙,为我打开了通
- DALL-E 2: 重新定义图像生成的人工智能
-龙川-
推荐介绍学习笔记dall·e2
前言随着人工智能技术的迅猛发展,图像生成已经成为AI研究领域中的一个重要方向。OpenAI推出的DALL-E2无疑是其中的佼佼者。这一强大的生成模型能够根据文本描述生成高质量的图像,为创意工作者和各行各业的专业人士提供了全新的工具。本文将深入探讨DALL-E2的原理、应用、技术优势及其对未来图像生成领域的影响。一、DALL-E2简介DALL-E2是OpenAI开发的一种基于GPT-3架构的生成模型
- GPT 模型简史:从 GPT-1 到 GPT-4
三月七꧁ ꧂
大模型开发gpt人工智能自然语言处理语言模型transformergpt-3prompt
文章目录GPT-1GPT-2GPT-3从GPT-3到InstructGPTGPT-3.5、Codex和ChatGPTGPT-4GPT-1 2018年年中,就在Transformer架构诞生⼀年后,OpenAI发表了⼀篇题为“ImprovingLanguageUnderstandingbyGenerativePre-Training”的论文,作者是AlecRadford等⼈。这篇论文介绍了GP
- GPT-3:一个新应用生态系统诞生了
派派AI学院
「某个应用程序用2个基于GPT-3的机器人相互辩论。这是YouTube用户BakzT.Future剖析的14个GPT-3应用程序之一。」GPT-3以其庞大的规模成为OpenAI令人印象深刻的自然语言处理(NLP)模型。Transformerencoder-decoder模型之间由超过1,750亿个被称为参数的单词之间的加权值连接,将其15亿个参数的前身GPT-2打的落花流水。您只要输入要执行的任务
- 【小白教学】一文教你如何使用文心一言、ChatGPT指令
斯克AI
文心一言chatgptprompt
近年来,随着人工智能技术的迅速发展,大语言模型如GPT-3、BERT等逐渐成为AI研究和应用的热点。而在中国,百度推出的文心一言(ERNIEBot)也逐渐崭露头角,成为众多开发者关注的焦点。但是想要用好人工智能就要学会如何运用指令,接下来教大家一些简单的方法。万能公式实际上,如果你能更精确地提问,那么GPT的回答质量就会相应提高。下面我将分享一个提问的通用模式:角色+目标+需求+额外信息。角色:例
- 大模型是如何炼成的:揭秘深度学习训练的秘密与优化技巧
AI大模型_学习君
深度学习人工智能大模型训练ai大模型LLM大语言模型大模型应用
引言:近年来,人工智能领域的突破性进展与大模型的崛起密不可分。从GPT-3到BERT,这些大型预训练模型在各种任务上展现出了惊人的能力。那么,这些大模型是如何训练出来的呢?本文将通过具体案例,带你走进深度学习训练的世界,一探究竟,并分享一些大模型训练过程中的优化技巧。一、数据收集与预处理数据收集:大模型的训练需要海量的数据。例如,GPT-3的训练数据包含了数十亿网页文本,而BERT则使用了维基百科
- 全能型模型与专精型模型
青空之蓝qk
人工智能python
一、全能型模型全能型模型旨在处理广泛的任务,具备多种能力。例如,GPT-3和GPT-4等大型语言模型可以进行文本生成、翻译、对话和问答等多种功能。这类模型的优势在于:1.灵活性:全能型模型可以在多种应用场景中使用,适应性强。例如,企业可以使用同一个模型处理客户服务、内容创作和市场分析等任务,降低了开发和维护成本。2.知识整合:全能型模型通常经过大量数据训练,能够整合不同领域的知识,提供更全面的解决
- 一起来聊聊大模型的token
做个天秤座的程序猿
token大模型tokengpt
文章目录前言一、token是什么二、常用分词方法三、GPT-3的分词方式1.代码示例2.`Ġworld`和`world`的区别1)分词中的空格前缀2)后续计算中的区别3.为什么使用子词分词总结前言学习大模型的朋友肯定听说过大模型接口按token,自己编写代码的时候也经常看到token这个词,那它究竟是什么呢,我们一起来探究一下一、token是什么在大模型中,“token”通常指代文本中的最小单位,
- 大型语言模型RAG(检索增强生成):检索技术的应用与挑战
in_tsz
语言模型人工智能自然语言处理
摘要检索增强生成(RAG)系统通过结合传统的语言模型生成能力和结构化数据检索,为复杂的问题提供精确的答案。本文深入探讨了RAG系统中检索技术的工作原理、实现方式以及面临的挑战,并对未来的发展方向提出了展望。随着大型预训练语言模型(LLMs)如GPT-3和BERT的出现,自然语言处理(NLP)领域取得了显著进展。然而,这些模型在处理知识密集型任务时仍存在局限性,特别是在需要最新或特定领域知识的情况下
- 借助ChatGPT提高编程效率指南
AI臻蚌
chatgptchatgpt人工智能
PS:ChatGPT无限次数,无需魔法,登录即可使用,网页打开下面一、借助ChatGPT提高编程效率指南随着计算机技术的飞速发展,编程已经成为了现代社会中一个非常重要的技能。对于许多人来说,编程不仅是一项工作技能,而且是一种生活方式。然而,即使是最有经验的程序员,也会在编写代码时遇到困难和挑战。幸运的是,我们可以利用现代技术来提高编程效率,并使我们的工作更加轻松。ChatGPT是一种基于GPT-3
- 微软宣布 Power Fx 开源!
老率的IT私房菜
PowerFx是一种基于类似表格公式的低代码通用编程语言,它是一种强类型、声明性和函数式语言,可根据需要提供命令式逻辑和状态管理,Excel用户使用PowerFx将会特别熟悉。今年5月,微软通过与OpenAI的GPT-3模型的集成进一步提升了语言能力,PowerFx可以使用自然语言代替复杂的公式进行计算。此前,微软只开放了PowerFx的文档,并计划在今年年底前对实际源代码进行开源。今日,微软将P
- Bert基础(一)--transformer概览
Andy_shenzl
DeepLearing&pytorchNLPberttransformer人工智能
1、简介当下最先进的深度学习架构之一,Transformer被广泛应用于自然语言处理领域。它不单替代了以前流行的循环神经网络(recurrentneuralnetwork,RNN)和长短期记忆(longshort-termmemory,LSTM)网络,并且以它为基础衍生出了诸如BERT、GPT-3、T5等知名架构。本文将带领你深入了解Transformer的实现细节及工作原理。本章首先介绍Tran
- Prompt Engineering 提示工程教程详情
沐知全栈开发
prompt人工智能
PromptEngineering(提示工程)是一种在自然语言处理(NLP)领域越来越受欢迎的技术。它涉及到创建和优化提示(prompts),以便从大型语言模型(如GPT-3)中获得高质量和目标导向的输出。在本教程中,我们将详细介绍提示工程的基本概念、实践方法和一些高级技巧。一、提示工程基础什么是提示工程?提示工程是一种艺术和科学,它涉及到设计智能提示,以激发大型语言模型的潜力,生成符合特定需求和
- Prompt Engineering 高级提示工程技巧
沐知全栈开发
prompt人工智能机器学习
PromptEngineering(提示工程)是一种在自然语言处理(NLP)领域越来越受欢迎的技术。它涉及到创建和优化提示(prompts),以便从大型语言模型(如GPT-3)中获得高质量和目标导向的输出。在本教程中,我们将详细介绍一些高级提示工程技巧,帮助您更有效地利用大型语言模型。一、参数调整许多大型语言模型允许用户调整生成输出的参数,如温度、顶部概率和最大长度。这些参数可以影响输出的创造性和
- 【翻译】GPT-3架构,简述于“餐巾纸”上
liyane
AI人工智能gpt-3
这是一篇技术派文章,尤其是其中的绘制于“餐巾纸”上的手绘图,从数学角度对于大语言模型的架构给你一些新的启发。原文链接:https://dugas.ch/artificial_curiosity/GPT_architecture.html作者:DanielDugas翻译/编辑:liyane使用LLMChatAPI翻译;为了方便对照,把英文原文也对应在每段中文翻译之下。现在马上跟随作者开始一次开心的旅
- 【AIGC】大语言模型
AIGCExplore
AIGCAIGC语言模型人工智能
大型语言模型,也叫大语言模型、大模型(LargeLanguageModel,LLM;LargeLanguageModels,LLMs)什么是大型语言模型大型语言模型(LLM)是指具有数千亿(甚至更多)参数的语言模型,它们是通过在大规模文本数据上进行训练而得到的。这些模型基于Transformer架构,其中包含多头注意力层,堆叠在一个非常深的神经网络中。常见的LLM包括GPT-3、PaLM、Gala
- NLP_GPT到ChatGPT
you_are_my_sunshine*
NLP大模型自然语言处理gptchatgpt
文章目录介绍小结介绍从初代GPT到GPT-3,主要经历了下面几个关键时刻。GPT:2018年,OpenAl发布了这款基于Transformer架构的预训练语言模型,其参数数量为1.17亿(117M)。GPT运用单向自回归方法生成文本,先预训练大量无标签文本,再在特定任务上进行微调。GPT在多种NLP任务上取得了显著进步。GPT-2:2019年,OpenAI推出了GPT的升级版,拥有更多参数[15亿
- 如何使用Hugging Face:对Transformer和pipelines的介绍
第欧根尼的酒桶
transformer深度学习人工智能
一、transformer介绍众所周知,transformer模型(如GPT-3、LLaMa和ChatGPT)已经彻底改变了人工智能领域。它们不仅被用于自然语言处理,还被应用于计算机视觉、语音处理和其他任务中。HuggingFace是一个以变换器为核心的Python深度学习库。因此,在我们深入了解其工作原理之前,我们将探讨什么是transformer,以及为什么它们能够支持如此强大的模型。1.递归
- 大模型基础知识
lichunericli
LLM人工智能语言模型
主流的开源模型体系GPT(GenerativePre-trainedTransformer)系列:由OpenAI发布的一系列基于Transformer架构的语言模型,包括GPT、GPT-2、GPT-3等。GPT模型通过在大规模无标签文本上进行预训练,然后在特定任务上进行微调,具有很强的生成能力和语言理解能力。BERT(BidirectionalEncoderRepresentationsfromT
- GPT3是否是强人工智能?
枯木嫩芽
今天和大家分享一下AI方向自然语言处理(NLP)领域内一个新的语言模型:GPT-3。GPT-3是继bert之后一次轰动NLP领域的语言模型,GPT-3是著名人工智能科研公司OpenAI开发的文本生成(textgeneration)人工智能,相关论文5月份已经发表,当时就以天文数字级别的1,750亿参数量引发轰动。训练该模型的数据达到了45TB,训练该语言模型的成本高达1200万美元的高价(喵喵前面
- ChatGPT的背后原理:大模型、注意力机制、强化学习
Python学研大本营
chatgpt
介绍ChatGPT机器人背后的原理,带你了解ChatGPT如何工作。微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩本文主要介绍为ChatGPT提供动力的机器学习模型,将从大型语言模型的介绍开始,深入探讨使GPT-3得到训练的革命性的自注意机制,然后深入到从人类反馈强化学习,这是使ChatGPT出类拔萃的新技术。大型语言模型ChatGPT是一类机器学习自然语言处理进行推断的模型,称
- LLM的参数微调、训练、推理;LLM应用框架;LLM分布式训练
lichunericli
LLM人工智能语言模型自然语言处理
大模型基础主流的开源大模型有哪些?GPT-3:由OpenAI开发,GPT-3是一个巨大的自回归语言模型,拥有1750亿个参数。它可以生成文本、回答问题、翻译文本等。GPT-Neo:由EleutherAI开发,GPT-Neo是一个开源的、基于GPT架构的语言模型,拥有数十亿到百亿级的参数。GPT-J:也是由EleutherAI开发的,GPT-J是一个拥有60亿参数的开源语言模型。PaLM(Pathw
- 用35行代码开发一个自己的AI对话机器人
也鱼实验室
之前也写了好几篇关于ChatGPT的文章了,领略到了与深入优化的GPT-3(GenerativePre-trainedTransformer)对话过程中的各种惊喜。但是因为ChatGPT的爆发性流量和访问限制问题,平时使用的时候多多少少会不太方便。其实OpenAI本身就提供了大量的API接口,可以让用户免费使用开发出自己的WebAPP,包括我们今天要说的对话机器人,关于API的一些应用,我在之前一
- 如何利用ChatGPT填写表格数据
摆烂大大王
chatgptchatgpt
随着人工智能技术的迅速发展,ChatGPT等智能对话系统已经成为了我们生活中的得力助手。其中,利用ChatGPT填写表格数据是一项十分实用的功能,它可以帮助我们节省时间,提高工作效率。下面,我们将介绍如何利用ChatGPT来填写表格数据。了解ChatGPT的能力在开始之前,我们需要明白ChatGPT的能力。ChatGPT是一个基于GPT-3或GPT-4的对话式人工智能模型,它能够理解和生成自然语言
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源