1. 非模式生物
非模式生物需要提前从AnnotationHub抓取目标物种的OrgDb数据库,这个库里包括Uniport,ENSEMBL,ENTREZID,REFSEQ,GO...。拥有它,你就可以实现GENENAME,ENSEMBL,ENTREZID等多种格式的自由转换。不过这个功能一些在线网站也能做到,如果只有少量数据转换,DAVID/gProfiler还是挺香的。下面以油菜(Brassica_napus)为例介绍OrgDb:
#R script
setwd("C:\\Users\\Desktop\\Transcriptome\\class\\class3")
####非模式生物通过AnnotationHub在线检索并抓取OrgDb
BiocManager::install("AnnotationHub")
library(AnnotationHub)
hub<-AnnotationHub::AnnotationHub()
query(hub,"Brassica") #抓取包含Brassica字符串的物种OrgDb包,并获取其编号
bna <- hub[["AH75769"]]
#玉米query(hub, "zea");maize <- hub[['AH55736']]
若你想深入了解OrgDb数据库,记住5个函数function():
- 1 columns() 显示括号内对象拥有的数据名称, 每一类数据为key
- 2 keys() 返回当前对象的keys
- 2 keytypes() 字义理解keys的种类,用在select和mapIds中作参数转化
- 3 select() 输入一组key,对应其column,可将其转化为目标keytype。输出的数据框同时包含转化前后数据。
- 4 mapId() 输入输入一组key,对应其keytype,可将其转化为目标column中的key。输出的数据只转化后数据(即column)。
这样的文字介绍还是抽象,不好理解。上机操作:
columns(bna)
# [1] "ACCNUM" "ALIAS" "CHR" "ENTREZID" "EVIDENCE"
# [6] "EVIDENCEALL" "GENENAME" "GID" "GO" "GOALL"
# [11] "ONTOLOGY" "ONTOLOGYALL" "PMID" "REFSEQ" "SYMBOL"
# [16] "UNIGENE"
keytypes(bna)
# [1] "ACCNUM" "ALIAS" "ENTREZID" "EVIDENCE" "EVIDENCEALL"
# [6] "GENENAME" "GID" "GO" "GOALL" "ONTOLOGY"
# [11] "ONTOLOGYALL" "PMID" "REFSEQ" "SYMBOL" "UNIGENE"
head(keys(bna,keytype="SYMBOL"))
#[1] "BNAA01G00220D" "BNAA01G00960D" "BNAA01G01590D" "BNAA01G01860D"
#[5] "BNAA01G01890D" "BNAA01G02080D"
genename<-select(bna,keys=c("BNAA01G00220D","BNAA01G02080D"),column=c("GENENAME"),keytype = "SYMBOL")
head(genename)
# SYMBOL GENENAME
# 1 BNAA01G00220D uncharacterized BNAA01G00220D
# 2 BNAA01G02080D uncharacterized BNAA01G02080D
entrezid<-mapIds(bna,keys=c("BNAA01G00220D","BNAA01G02080D"), column = c("ENTREZID"), keytype = "SYMBOL")
head(entrezid)
# BNAA01G00220D BNAA01G02080D
# "106357927" "106370211"
模式动物基因功能KEGG/GO注释(ClusterProfiler)
模式动物有现成的OrgDb包,安装加载目标物种的R package就可以了。
####模式动物(人为例)使用clusterProfiler进行GO/KEGG分析
#Bioconductor 安装 clusterProfiler
BiocManager::install("clusterProfiler")
BiocManager::install("org.Hs.eg.db")
install.packages("org.Hs.eg.db")
#加载clusterProfiler
library(clusterProfiler)
library(ggplot2)
library(org.Hs.eg.db)
hsa<-org.Hs.eg.db
keytypes(hsa)
head(keys(hsa, keytype="SYMBOL"))
#读入基因数据
gene<-read.csv("DEGs_identified.csv")
head(gene)
# Ensembl padj log2FoldChange
# 1 ENSG00000001084 1.06000e-32 1.371851
# 2 ENSG00000002587 5.12000e-57 2.516021
# 3 ENSG00000003096 9.67315e-04 -1.088586
# 4 ENSG00000003137 6.01000e-18 1.170100
# 5 ENSG00000003400 8.16000e-07 -1.092483
# 6 ENSG00000004487 1.04000e-24 1.061878
dim(gene)
# [1] 934 3
#筛选|FC|>=2且FDR<=0.05的为显著差异基因
gene_ensembl<-na.omit(gene[(abs(gene$log2FoldChange)>= 1)&(gene$padj<= 0.05),1])
head(gene_ensembl);length(gene_ensembl)
#[1] ENSG00000001084 ENSG00000002587 ENSG00000003096 ENSG00000003137 ENSG00000003400 ENSG00000004487
# 934 Levels: ENSG00000001084 ENSG00000002587 ENSG00000003096 ENSG00000003137 ENSG00000003400 ... ENSG00000276600
# [1] 934
#通过ENSEMBL,获取ENTREZID,GENENAME
genelist<- bitr(gene_ensembl,fromType="ENSEMBL",toType=c("ENTREZID","GENENAME"),OrgDb=hsa)
#'select()' returned 1:many mapping between keys and columns
#Warning message:
#In bitr(gene_ensembl, fromType = "ENSEMBL", toType = c("ENTREZID", :
#0.86% of input gene IDs are fail to map...
值得一提的是,除了bitr()还有个bitr_kegg()函数,也是转换用的,不过看名字就知道,这个函数服务于kegg。bitr_kegg中的转化参数有“Path”, “Module”, “ncbi-proteinid”, “ncbi-geneid”, “uniprot”, “kegg”。提供其中一项可以互相转化,举个栗子:
kegg<-bitr_kegg(genelist$ENTREZID,fromType="ncbi-geneid",toType="kegg",organism='hsa')
head(kegg)
# ncbi-geneid kegg
# 1 100131827 100131827
# 2 100132074 100132074
Path<-bitr_kegg(genelist$ENTREZID,fromType="ncbi-geneid",toType="Path",organism='hsa')
head(Path)
#
人类KEGG库中对应编码hsa, 如果你不知道目标物种对应的缩写organism=?,请点击kegg_organism_list。而'kegg'和‘Path‘都是取自KEGG PATHWAY数据库,kegg表示KEGG PATHWAY数据库中基因命名方式,大多数采用ENTREZID,也有用其他方式,比如拟南芥。如果你不确定目标物种的kegg命名,可以使用ncbi-geneid(ENTREZID)转化为kegg。而Path则为目标基因对应的kegg pathway的编号。
在使用bitr_kegg时常会报错,比如
如果你确定物种缩写没有错,keyType使用正确,那就不是你的问题,可能是网络的问题,多跑几遍♂️。
差异基因功能GO分析
GO/kegg分析的在线工具很多,比如gProfiler。但是如果需要批量处理几组差异基因分析,在线工具还是挺费事的。你没时间研究R的话,用网页点点点也是错不了。
GO(GENE ONTOLOGY)对功能的注释分为三大类:分别是BP,MF,和CC。通过对ont的选择(ont='BP','MF','CC')就能分门别类地分析,但如果你想一次解决,直接令ont="ALL"。
下面进入ClusterProfiler的高光时刻,走起:
go.all<- enrichGO(gene=genelist$ENTREZID,
OrgDb = org.Hs.eg.db,
ont='ALL', #ont='BP'
pAdjustMethod = 'BH',
pvalueCutoff = 0.05,
qvalueCutoff = 0.2,
keyType = 'ENTREZID')
go.all
# over-representation test
#...@organism Homo sapiens
#...@ontology GOALL
#...@keytype ENTREZID
#...@gene chr [1:929] "2729" "9957" "90293" "56603" "843" "23028" "115703" "26224" "114881" "51330" "80853" "55200" ...
#...pvalues adjusted by 'BH' with cutoff <0.05
#...627 enriched terms found
#'data.frame': 627 obs. of 10 variables:
# $ ONTOLOGY : Factor w/ 2 levels "BP","MF": 1 1 1 1 1 1 1 1 1 1 ...
# $ ID : chr "GO:0001763" "GO:0061138" "GO:0045766" "GO:0048754" ...
# $ Description: chr "morphogenesis of a branching structure" "morphogenesis of a branching epithelium" "positive regulation of angiogenesis" "branching morphogenesis of an epithelial tube" ...
# $ GeneRatio : chr "33/832" "30/832" "31/832" "26/832" ...
# $ BgRatio : chr "196/18670" "182/18670" "204/18670" "150/18670" ...
# $ pvalue : num 4.02e-11 5.27e-10 2.13e-09 2.49e-09 2.89e-09 ...
# $ p.adjust : num 2.10e-07 1.38e-06 3.03e-06 3.03e-06 3.03e-06 ...
# $ qvalue : num 1.62e-07 1.06e-06 2.33e-06 2.33e-06 2.33e-06 ...
# $ geneID : chr "54903/6591/639/59277/2294/2138/374/7422/7475/1746/5228/53335/157506/6662/650/54567/10253/2247/1969/9353/170690/"| __truncated__ "54903/6591/59277/2294/2138/374/7422/7475/5228/157506/6662/650/54567/10253/2247/1969/9353/170690/133/10481/57216"| __truncated__ "9734/5743/23411/3162/3696/5054/7422/3552/2152/5228/3553/79924/694/2113/9314/9982/7057/1545/2247/133/7424/51738/"| __truncated__ "54903/2294/2138/374/7422/7475/5228/157506/6662/650/54567/10253/2247/1969/9353/170690/57216/64783/4824/2637/2303"| __truncated__ ...
# $ Count : int 33 30 31 26 33 44 48 47 44 21 ...
#随后对富集结果进行总览,查看BP,CC,MF的个数
dim(go.all[go.all$ONTOLOGY=='BP',]);dim(go.all[go.all$ONTOLOGY=='CC',]);dim(go.all[go.all$ONTOLOGY=='MF',])
#保存结果
write.csv(go.all@result,'DEG_go.all.result.csv',row.names=F)
用enrichplot画个图看看:
dotplot(go.all,showCategory = 10, size = NULL,font.size = 10, title = "GO enrichment", split = "ONTOLOGY") + facet_grid(ONTOLOGY ~ ., scales = "free")
barplot(go.all,showCategory = 10, size = NULL,font.size = 10, title = "GO enrichment", split = "ONTOLOGY") + facet_grid(ONTOLOGY ~ ., scales = "free")
如果要将ont='BP'筛选出来,并且对P值设置更为严格阈值,有两种方式可以直接筛选:1.直接筛选;2.利用clusterProfiler.dplyr。
##1. 直接筛选,MF没有富集到terms,不作演示
enrich.BP<-go.all[go.all@result$pvalue<0.01&go.all$ONTOLOGY=='BP',]
enrich.CC<-go.all[go.all@result$pvalue<0.01&go.all$ONTOLOGY=='CC',]
dim(enrich.BP);dim(enrich.CC)
还可以安装个为cluster profiler服务的数据处理包clusterProfiler.dplyr。然后一条命令就解决了。
install.packages("devtools")
devtools::install_github("YuLab-SMU/clusterProfiler.dplyr")
BiocManager::install('clusterProfiler.dplyr')
library(clusterProfiler.dplyr)
enrich.BP<-filter(go.all,ONTOLOGY=='BP',p.adjust <.01, qvalue < 0.1)
enrich.BP@ontology<-"BP"
dim(enrich.BP)
BP.bar<-barplot(enrich.BP,showCategory=20);BP.dot<-dotplot(enrich.BP,showCategory=20)
BP.bar
BP.dot
通常得到的GOterms中有一些相似度较高的term,我们可以去除这些冗余terms,让结果更加简洁。
##去除冗余terms
go.filter<-simplify(enrich.BP,cutoff = 0.7,
by = "p.adjust",
select_fun = min)
dim(go.filter)
#将结果数据框中的ENTREZID转化为SYMBOL
y <-setReadable(go.all,OrgDb = org.Hs.eg.db,keyType="ENTREZID")
head(y)
接下来是KEGG,KEGG需要注意的是organism,keyType,use_internal_data设置。
enrich.kegg <- enrichKEGG(gene =genelist$ENTREZID,
organism ="hsa",
keyType = "kegg",
pvalueCutoff = 1,
pAdjustMethod = "BH",
minGSSize = 10,
maxGSSize = 500,
qvalueCutoff = 1,
use_internal_data =FALSE)
dim(enrich.kegg)
minGSSize:minimal size of genes annotated for testing,用于测试基因集的最小数目。
maxGSSize:maximal size of genes annotated for testing,用于测试的基因注释最大数目。
这两个参数常常被忽略。
use_internal_data : 是否使用内部数据,当use_internal_data =FALSE时,爬取在线KEGG PATHWAY数据库,特点就是实时更新,而内部数据就有滞后性了。
需要注意pvalue或p.adjust设置
sig.kegg<-filter(enrich.kegg,pvalue<.05,qvalue<0.2)
dim(sig.kegg)
kegg.bar<-barplot(sig.kegg,showCategory=20,color = "pvalue")
kegg.dot<-dotplot(sig.kegg,showCategory=20,color = "pvalue")
db<-plot_grid(kegg.bar,kegg.dot,ncol=2)
db
ggsave("kegg_bar_dot1.png",db,width=14,height=6)
问题一:横坐标,气泡溢出
p1<-kegg.dot + xlim(NA,0.085) #数值>横坐标显示值
p1
db1<-plot_grid(kegg.bar,p1,ncol=2)
db1
ggsave("kegg_bar_dot2.png",db1,width=14,height=6)
问题二:注释文字太长,截断成两行
library(stringr)
p2<- kegg.dot + scale_y_discrete(labels=function(y) stringr::str_wrap(y,width=36))
p2
#####问题三:改变颜色
p30 <-p2 + scale_color_continuous(low='purple',high='green')+ xlim(NA,0.084)
p30
p31 <-p2 + scale_color_gradientn(colours = rainbow(5))+ xlim(NA,0.084)
p31
p32 <-p2+scale_color_gradient(low="yellow", high="green")+ xlim(NA,0.084)
p32
db<-plot_grid(p30,p31,p32,ncol=3)
db
ggsave("kegg_bar_dot3.png",db,width=16,height=6)
问题四:改变形状
p3 <-p31 + aes(shape=GeneRatio > 0.05)
p3
问题五:气泡变大
p6<- p31 + scale_size(range=c(2,12))
p6
问题六:横坐标不是GeneRatio,而是richFactor或者FoldEnrichment
y1 <- mutate(sig.kegg, richFactor = Count / as.numeric(sub("/\\d+", "", BgRatio)))
#y2 <- mutate(sig.kegg, FoldEnrichment = parse_ratio(GeneRatio) / parse_ratio(BgRatio))
y1
#若横轴是FoldEnrichment将y1替换成y2,
library(enrichplot)
library(forcats)
rf<-ggplot(y1, showCategory = 20,
aes(richFactor, fct_reorder(Description,richFactor))) +
geom_point(aes(color=pvalue, size = Count)) +
scale_color_viridis_c(guide=guide_colorbar(reverse=TRUE)) +
scale_size_continuous(range=c(2,10)) +
#theme_minimal() +
xlab("Rich Factor") +
ylab(NULL) +
ggtitle("Top 20 KEGG Enrichment")+
theme_bw()
ggsave("kegg_bar_dot4.png",rf,width=7,height=5)
如果你还想了解更多,点击下方链接,直接进入clusterProfiler官方解说
clusterProfiler 官方document
一本关于clusterProfiler的小册子 by Y叔
如果您有任何需要的组学服务,请关注伟寰生物公众号,扫码联系我们,谢谢支持!