Standalone模式是Spark自带的一种集群模式,不同于前面本地模式启动多个进程来模拟集群的环境,Standalone模式是真实地在多个机器之间搭建Spark集群的环境,完全可以利用该模式搭建多机器集群,用于实际的大数据处理。
StandAlone是完整的Spark运行环境,其中:Master角色以Master进程存在, Worker角色以Worker进程存在,Driver和Executor运行于Worker进程内, 由Worker提供资源供给它们运行。
StandAlone集群在进程上主要有3类进程:
使用三台Linux虚拟机来组成集群环境, 分别是:
node1\ node2\ node3
node1运行: Spark的Master进程 和 1个Worker进程
node2运行: spark的1个worker进程
node3运行: spark的1个worker进程
整个集群提供: 1个master进程 和 3个worker进程
同时不要忘记 都创建pyspark
虚拟环境,以及安装虚拟环境所需要的包pyspark jieba pyhive
。
参考 Local模式下 环境变量的配置内容。
确保3台都配置
进入到spark的配置文件目录中, cd $SPARK_HOME/conf
配置workers文件
# 改名, 去掉后面的.template后缀
mv workers.template workers
# 编辑worker文件
vim workers
# 将里面的localhost删除, 追加
node1
node2
node3
到workers文件内
# 功能: 这个文件就是指示了 当前SparkStandAlone环境下, 有哪些worker
配置spark-env.sh文件
# 1. 改名
mv spark-env.sh.template spark-env.sh
# 2. 编辑spark-env.sh, 在底部追加如下内容
## 设置JAVA安装目录
JAVA_HOME=/export/server/jdk
## HADOOP软件配置文件目录,读取HDFS上文件和运行YARN集群
HADOOP_CONF_DIR=/export/server/hadoop/etc/hadoop
YARN_CONF_DIR=/export/server/hadoop/etc/hadoop
## 指定spark老大Master的IP和提交任务的通信端口
# 告知Spark的master运行在哪个机器上
export SPARK_MASTER_HOST=node1
# 告知sparkmaster的通讯端口
export SPARK_MASTER_PORT=7077
# 告知spark master的 webui端口
SPARK_MASTER_WEBUI_PORT=8080
# worker cpu可用核数
SPARK_WORKER_CORES=1
# worker可用内存
SPARK_WORKER_MEMORY=1g
# worker的工作通讯地址
SPARK_WORKER_PORT=7078
# worker的 webui地址
SPARK_WORKER_WEBUI_PORT=8081
## 设置历史服务器
# 配置的意思是 将spark程序运行的历史日志 存到hdfs的/sparklog文件夹中
SPARK_HISTORY_OPTS="-Dspark.history.fs.logDirectory=hdfs://node1:8020/sparklog/ -Dspark.history.fs.cleaner.enabled=true"
注意, 上面的配置的路径 要根据你自己机器实际的路径来写。
在HDFS上创建程序运行历史记录存放的文件夹:
hadoop fs -mkdir /sparklog
hadoop fs -chmod 777 /sparklog
配置spark-defaults.conf文件
# 1. 改名
mv spark-defaults.conf.template spark-defaults.conf
# 2. 修改内容, 追加如下内容
# 开启spark的日期记录功能
spark.eventLog.enabled true
# 设置spark日志记录的路径
spark.eventLog.dir hdfs://node1:8020/sparklog/
# 设置spark日志是否启动压缩
spark.eventLog.compress true
配置log4j.properties 文件 [可选配置]
# 1. 改名
mv log4j.properties.template log4j.properties
# 2. 修改内容 参考下图
这个文件的修改不是必须的, 为什么修改为WARN. 因为Spark是个话痨,会疯狂输出日志, 设置级别为WARN 只输出警告和错误日志, 不要输出一堆废话。
scp -r spark-3.1.2-bin-hadoop3.2 node2:/export/server/
scp -r spark-3.1.2-bin-hadoop3.2 node3:/export/server/
不要忘记, 在node2和node3上 给spark安装目录增加软链接
`ln -s /export/server/spark-3.1.2-bin-hadoop3.2 /export/server/spark`
检查每台机器的:
JAVA_HOME
SPARK_HOME
PYSPARK_PYTHON
等等 环境变量是否正常指向正确的目录
`sbin/start-history-server.sh`
# 启动全部master和worker
sbin/start-all.sh
# 或者可以一个个启动:
# 启动当前机器的master
sbin/start-master.sh
# 启动当前机器的worker
sbin/start-worker.sh
# 停止全部
sbin/stop-all.sh
# 停止当前机器的master
sbin/stop-master.sh
# 停止当前机器的worker
sbin/stop-worker.sh
执行:
bin/pyspark --master spark://node1:7077
# 通过--master选项来连接到 StandAlone集群
# 如果不写--master选项, 默认是local模式运行
bin/spark-shell --master spark://node1:7077
# 同样适用--master来连接到集群使用
// 测试代码
sc.parallelize(Array(1,2,3,4,5)).map(x=> x + 1).collect()
bin/spark-submit --master spark://node1:7077 /export/server/spark/examples/src/main/python/pi.py 100
# 同样使用--master来指定将任务提交到集群运行
node1:18080
来进入到历史服务器的WEB UI上.