前面一篇文章Python单元测试框架介绍已经介绍了python单元测试框架,大家平时经常使用的是unittest,因为它比较基础,并且可以进行二次开发,如果你的开发水平很高,集成开发自动化测试平台也是可以的。而这篇文章主要讲unittest与pytest的区别,pytest相对unittest而言,代码简洁,使用便捷灵活,并且插件很丰富。
主要从用例编写规则、用例的前置和后置、参数化、断言、用例执行、失败重运行和报告这几个方面比较unittest和pytest的区别:
如果不好看,可以看下面表格:
总体来说,unittest用例格式复杂,兼容性无,插件少,二次开发方便。pytest更加方便快捷,用例格式简单,可以执行unittest风格的测试用例,无须修改unittest用例的任何代码,有较好的兼容性。pytest插件丰富,比如flask插件,可用于用例出错重跑,还有xdist插件,可用于设备并行执行,效率更高。
讲了七大区别,总要演示一下具体实例,用事实说话。
这里抽用例前置与后置的区别来讲,先看unittest的前后置使用:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
|
运行结果:
从结果上得知, 三个方法的逻辑优先级: setUp()&tearDown() < setUpClass()&tearDownClass() < setUpModule()&tearDownModule()
接下来看pytest的前后置:
1、我们都知道在自动化测试中都会用到前后置,pytest 相比 unittest 无论是前后置还是插件等都灵活了许多,还能自己用 fixture 来定义。
首先了解一下,用例运行前后置级别如下:
1.模块级:全局的,整个模块开只运行一次,优先于测试用例。
2.类级别:定义在类里面,只针对此类生效。类似unittest的cls装饰器
3.函数级:只对函数生效,类下面的函数不生效。
4.方法级:定义在类里面,每个用例都执行一次
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
|
运行结果:
2、这是原始用法,下面看使用Fixture,Fixture 其实就是自定义 pytest 执行用例前置和后置操作,首先创建 conftest.py 文件 (规定此命名),导入 pytest 模块,运用 pytest.fixture 装饰器,默认级别为:函数级:
其它用例文件调用即可,如下定义一个函数,继承 conftest.py 文件里的 login 函数即可调用:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
运行结果:
3、扩展用法,多个自定义函数和全局级别展示:(全局的比如用于登录获取到token其他用例模块就不需要再登录了)
1 2 3 4 5 6 7 8 9 10 |
|
运行结果:
细心的人应该可以知道,测试用例2并没有调用login函数,因为前置设置的是共享模式,类似全局函数。
参数化应用场景,一个场景的用例会用到多条数据来进行验证,比如登录功能会用到正确的用户名、密码登录,错误的用户名、正确的密码,正确的用户名、错误的密码等等来进行测试,这时就可以用到框架中的参数化,来便捷的完成测试。
参数化 就是数据驱动思想,即可以在一个测试用例中进行多组的数据测试,而且每一组数据都是分开的、独立的。
unittest参数化其实是:ddt,叫数据驱动。
pytest数据驱动,就是参数化,使用@pytest.mark.parametrize
1.先看unittest如何进行参数化:
1 2 3 4 5 6 7 8 9 |
|
运行结果:
2.pytest中参数化的用法
在测试用例的前面加上:
@pytest.mark.parametrize("参数名",列表数据)
参数名:用来接收每一项数据,并作为测试用例的参数。
列表数据:一组测试数据。
@pytest.mark.parametrize("参数1,参数2",[(数据1,数据2),(数据1,数据2)])
示例:
@pytest.mark.parametrize("a,b,c",[(1,3,4),(10,35,45),(22.22,22.22,44.44)])
def test_add(a,b,c):
res = a + b
assert res == c
实例:
1 2 3 4 5 6 7 |
|
运行结果:
以上就是unittest与pytest测试框架的区别,七大主要区别,这里已讲了两个区别的实例,其他五个有时间再补充,如对python自动化测试感兴趣的朋友,可以加入下方小卡片,讨论交流一下心得。