-
经典的TSP问题,是通过随机初始化蚂蚁的起始地点,然后设置每个城市都可以访问,访问完所有的城市那么结束循环,来形成回路的。
-
带有起始点的TSP问题就是,初始化时蚂蚁的初始点只能是起点,并且如果没访问的城市还有两个或者以上那么就设置终点不可访问(当访问的城市只剩最后一个时候打开即可,我的程序中是设置open_table的布尔值)。
-
所以带有起点和终点的TSP问题相对于经典的TSP问题使用蚁群算法进行求解的时候只用改两行代码即可,非常的简单。
- 这个蚁群算法是使用op2优化(邻域搜索优化)的蚁群,基本上100个城市的规模使用30个蚂蚁一次循环在10s内就可以得到最优值/次优解,所谓邻域搜索+蚁群算法也很简单,就是在一只蚂蚁算出所有路径之后,对子路径进行翻转即可(不懂的用笔验算一下就明白了),翻转操作用程序实现非常简单。
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import random
import copy
import time
import sys
import math
import datetime
from math import radians, cos, sin, asin, sqrt
class Ant(object):
# 初始化
def __init__(self,ID,distance_graph,pheromone_graph,ALPHA,BETA):
self.city_num=len(distance_graph)
self.distance_graph=distance_graph #距离矩阵
self.pheromone_graph=pheromone_graph #信息素矩阵
self.ID = ID # ID
(self.ALPHA, self.BETA) = (ALPHA , BETA)#蚂蚁在选择路径时 信息素与距离反比的比重
self.path = [] # 当前蚂蚁的路径
self.total_distance = 0.0 # 当前路径的总距离
self.move_count = 0 # 移动次数
self.current_city = -1 # 当前停留的城市
self.open_table_city = [True for i in range(self.city_num)] # 探索城市的状态
if self.city_num >2: #如果商店数目大于2那么就不能走city[1]
self.open_table_city[1]=False
#city_index = random.randint(0, self.city_num - 1) # 随机初始出生点
city_index=0 #初始点是开始点
self.current_city = city_index
self.path.append(city_index) # 这只蚂蚁经过的路径
self.open_table_city[city_index] = False # 城市是否无访问
self.move_count = 1
# 选择下一个城市
def _choice_next_city(self):
next_city = -1
select_citys_prob = [0.0 for i in range(self.city_num)] #选择城市的可能性
total_prob = 0.0
# 获取去下一个城市的概率
for i in range(self.city_num):
if self.open_table_city[i]:
try:
# 计算概率:与信息素浓度成正比,与距离成反比
select_citys_prob[i] = pow(self.pheromone_graph[self.current_city][i], self.ALPHA) * pow(
(1.0 / (self.distance_graph[self.current_city][i]+0.00001)), self.BETA)
total_prob += select_citys_prob[i]
except ZeroDivisionError as e:
print('Ant ID: {ID}, current city: {current}, target city: {target}'.format(ID=self.ID,current=self.current_city,target=i))
sys.exit(1)
# 轮盘选择城市
if total_prob > 0.0:
# 产生一个随机概率
temp_prob = random.uniform(0.0, total_prob)
for i in range(self.city_num):
if self.open_table_city[i]:#如果城市没有被访问
# 轮次相减
temp_prob -= select_citys_prob[i]
if temp_prob < 0.0:
next_city = i
break
# 未从概率产生,顺序选择一个未访问城市 如果temp_prob恰好选择了total_prob那么就在所有未去的城市中选择一个去的城市
if next_city == -1:
for i in range(self.city_num):
if self.open_table_city[i]:
next_city = i
break
# 返回下一个城市序号
return next_city
# 移动操作
def _move(self, next_city):
self.path.append(next_city)
self.open_table_city[next_city] = False
self.current_city = next_city
self.move_count += 1
#翻转操作
def _reverse(self,start,end):#表示是protect函数
#self.path[start:end+1]=self.path[end:start-1:-1] #从bc 变成cb
tmpPath=self.path.copy()
tmpPath[start:end+1]=tmpPath[end:start-1:-1]
return tmpPath
def _cal_lenth(self,path):
temp_distance = 0.0
for i in range(1, len(path)):
start, end = path[i], path[i - 1]
temp_distance += self.distance_graph[start][end]
return temp_distance
def _need_reverse(self,start,end):
tmpPath=self.path[start-1:end+2].copy()
tmpPath[1:-1]=tmpPath[-2:0:-1]
return self._cal_lenth(tmpPath) < self._cal_lenth(self.path[start-1:end+2])
# 搜索路径
def search_path(self):
# 搜素路径,遍历完所有城市为止
while self.move_count < self.city_num:
# 移动到下一个城市
next_city = self._choice_next_city()
self._move(next_city)
if self.move_count== self.city_num-1:#最后一个城市选择终点城市
self.open_table_city[1]=True
# 计算路径总长度
self.total_distance=self._cal_lenth(self.path)
i=2#步长
while i < self.city_num-1:
j=1#起始位置
while j < self.city_num-i:
if self._need_reverse(j,i+j-1):
self.path=self._reverse(j,i+j-1) #得到翻转之后的路径
self.total_distance =self._cal_lenth(self.path) #更新总长度
i=2#重做整个结果
j=1
j+=1
i+=1
class tsp(object):
def __init__(self,data_set):#data_set是所有点的经纬度坐标,label_list是这个分组的编号序列
self.cities = data_set # 商店的地址(经纬度信息)
self.maxIter = 1 #蚁群算法的最大迭代次数
self.rootNum = data_set.shape[0]#本分组的商店的数目
(self.city_num, self.ant_num) = (self.rootNum, 30)
(self.ALPHA, self.BETA, self.RHO, self.Q) = (1.0, 9.0, 0.5, 100.0)#蚁群算法参数
self.distance_graph=[[0.0 for i in range(self.city_num)] for j in range(self.city_num)]
self.pheromone_graph=[[1.0 for i in range(self.city_num)] for j in range(self.city_num)]
self.get_Dis_Pherom()#初始化距离
self.new()
def transf_Dist(self,lon1, lat1, lon2, lat2): # 经度1,纬度1,经度2,纬度2 (十进制度数)
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
# 将十进制度数转化为弧度
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine公式
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2
c = 2 * asin(sqrt(a))
r = 6371 # 地球平均半径,单位为公里
return c * r * 1000
def get_Dis_Pherom(self):
# 初始化城市距离
for i in range(self.city_num):
for j in range(self.city_num):
self.distance_graph[i][j] =self.transf_Dist(self.cities[i,0],self.cities[i,1],self.cities[j,0],self.cities[j,1])
def new(self,evt=None):
# 初始化信息素
self.ants = [Ant(ID,self.distance_graph,self.pheromone_graph,self.ALPHA, self.BETA) for ID in range(self.ant_num)] # 初始蚁群
self.best_ant = self.ants[-1] # 初始最优解
self.best_ant.total_distance = (1 << 31) # 初始最大距离
self.iter = 0 # 初始化迭代次数
def search_path(self,evt=None):
while self.iter0 :
if coordinateList[pathList[i]][0]==coordinateList[pathList[i-1]][0] and coordinateList[pathList[i]][1]==coordinateList[pathList[i-1]][1]:
continue
else :
resultList.append(coordinateList[pathList[i]])
else :
resultList.append(coordinateList[pathList[i]])
return resultList
if __name__ == '__main__':
point_num = 66 # 点的数目
random.seed(point_num)
data_set = np.array( # 生成point_num个随机的经纬坐标信息
[[(random.random() * 100000 + 116300000) / 1000000, (random.random() * 100000 + 39900000) / 1000000] for i in
range(point_num)])
#其中第0个点是起点,第1个点是终点
resultList=get_route(116.37494599868327, 39.905368158173204, 116.36079610914554, 39.93572462665125,data_set)
print(resultList)
print(len(resultList))