- Agent与自主系统之核心概念与架构解析
陈乔布斯
AI人工智能大模型架构人工智能AIpythonAgent大模型智能体
引言:从智能助手到自主决策者想象一下,当你清晨醒来,智能家居系统已经根据你的睡眠数据和日程安排,自动调节了室内温度、煮好了咖啡,并推送了个性化的早间新闻摘要。这一切背后,正是Agent在默默工作——它们不再是被动执行指令的工具,而是能够感知环境、自主决策并持续优化的"数字同事"。2025年,Agent技术迎来爆发式发展。从OpenAI的Operator能独立完成餐厅预订和购物,到智谱的AutoGL
- 语音信号基础篇1-预加重(Pre-emphasis)
沐黎~
信号与系统语音识别人工智能
预加重就是对语音信号的高频进行补偿,语音信号90%能量集中在有效带宽低频分量上,高频分量频谱(一般我们用其幅度谱,通俗将就是频谱的模长或者绝对值长度)较小,我们让它变大一定,占比多,增强其高频分量。预加重原理也非常简单,其时域表达式非常简单,如下式子:公式中:一般取0.97时域看着就简单后一个减去前一个,看不出有什么规律,我们对其进行z变换,可得:合并同类项,可得:自变量为z,我们画出z变化后的频
- 9.7 国产代码生成神器CodeGeex2实测:效率提升300%,免费平替Copilot!
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力copilotlangchainllama语言模型
国产代码生成神器CodeGeex2实测:效率提升300%,免费平替Copilot!代码生成模型CodeGeex2:智能编程的国产之光智谱AI推出的CodeGeex2是当前国产代码生成模型的标杆之作,其技术架构与训练策略展现了中国在代码大模型领域的突破性进展。本章将深入解析CodeGeex2的技术原理,并通过实战演示如何构建智能编程助手。一、CodeGeex2技术架构解析1.1模型底座与训练数据
- 前沿交叉:Fluent与深度学习驱动的流体力学计算体系
m0_75133639
流体力学深度学习人工智能航空航天fluent流体力学材料科学CFD
基础模块流体力学方程求解1、不可压缩N-S方程数值解法(有限差分/有限元/伪谱法)·Fluent工业级应用:稳态/瞬态流、两相流仿真(圆柱绕流、入水问题)·Tecplot流场可视化与数据导出2、CFD数据的AI预处理·基于PCA/SVD的流场数据降维·特征值分解与时空特征提取深度学习核心3.物理机理嵌入的神经网络架构·物理信息神经网络(PINN):将N-S方程嵌入损失函数(JAX框架实现)·神经常
- 多模态AI声纹特征处理与多模态生物识别系统
一、声纹特征处理在多模态AI系统中,声纹特征的处理是实现高精度生物识别的关键步骤之一。以下是声纹特征处理的主要流程:数据预处理语音增强:对采集到的语音信号进行降噪处理,以提高信号质量。语谱图生成:将增强后的语音信号转换为语谱图,语谱图是一种时间-频率表示,能够直观地展示语音信号的频谱变化。图像转换:将彩色语谱图转换为灰度图,进一步进行二值化处理,以便提取纹理特征。特征提取MFCC特征:梅尔频率倒谱
- 【工具】Eclipse:一个用于对两个或多个非靶向液相色谱-质谱代谢组学数据集进行比对的 Python 软件包
生信学习者1
学习笔记python数据分析数据挖掘
文章目录介绍代码参考介绍非靶向液相色谱-串联质谱(LC-MS)代谢组学数据集蕴含着大量信息,但在分析和处理过程中却面临诸多挑战。通常,需要对两个或多个独立处理的数据集进行整合以形成完整的数据集,但现有的软件并不能完全满足我们的需求。为此,我们创建了一个名为“Eclipse”的开源Python包。Eclipse采用一种新颖的基于图的方法来处理由n个(n>2)数据集引发的复杂匹配情况。Nontarge
- 振动分析常用的频谱类型
m0_55576290
工作一二三信号与系统振动分析
文章目录振动分析常用的频谱类型1.幅值谱(AmplitudeSpectrum)-最常用2.功率谱密度(PSD)-用于随机信号3.自功率谱(AutoPowerSpectrum)振动分析中的选择原则.振动分析中的频谱选择建议故障诊断→幅值谱模态分析→自功率谱随机振动→功率谱密度宽动态范围→对数坐标实际应用中的处理方法总结振动分析常用的频谱类型1.幅值谱(AmplitudeSpectrum)-最常用%幅
- 2025版最新渗透测试入门教程,从零基础入门到精通,从看这篇开始!
Python_chichi
网络安全安全系统安全web安全
目录渗透测试:不只是找Bug,更是“攻心”?渗透测试“十八般武艺”:你练哪一种?渗透测试“套路”深:六大流派,谁是天下第一?(待续)渗透测试兵器谱:神兵利器大盘点(待续)渗透测试实战演习:看我如何“偷”走你的秘密(待续)从小白到大神:渗透测试修炼手册前言:别再啃那些枯燥的教科书了!想入行网络安全?想玩转渗透测试?别再抱着那些过时的教程死记硬背了!这玩意儿,光靠理论可不行,得结合实战,还得有点“玄学
- 扫描电镜能谱分析入门:扫描电镜不仅能看,还能“查成分”
扫描电镜
扫描电镜扫描电子显微镜科研扫描电镜推荐
扫描电镜能谱分析入门:扫描电镜不仅能看,还能“查成分”掌握EDS,从一张黑白图到微观化学地图的跃迁引言:黑白图像之外,还有哪些信息?在扫描电子显微镜(SEM)中,你或许已经熟悉了放大图像的纹理与结构。但仅靠形貌还不够,我们还需要知道:这是什么材料?都有哪些元素?分布在哪里?这就是能谱分析(EDS)登场的时刻。配合SEM,EDS让我们从“看图”进入“读谱”的阶段,打通形貌与成分之间的桥梁,是现代微纳
- 佰力博科技与您探讨阻抗谱测量的基本原理和测量方法
阻抗谱测量是一种通过施加小幅度的交流信号激励,并分析被测对象在不同频率下的响应来获取阻抗信息的技术。它广泛应用于材料科学、电化学、生物医学等领域,用于表征材料或系统的电学特性、界面特性以及动力学行为。1、阻抗谱测量的基本原理阻抗谱测量的核心是通过施加一个频率可调的小幅度交流信号(如正弦波电压或电流),记录被测对象的响应信号(如电流或电压)。通过分析激励信号与响应信号之间的幅值比和相位差,可以得到频
- [AI笔记]-LLM中的3种架构:Encoder-Only、Decoder-Only、Encoder-Decoder
Micheal超
AI笔记人工智能笔记架构
一、概述架构描述特点案例Encoder-Only仅包含编码器部分这类模型主要专注输入数据中提取特征或上下文信息,通常不需要生成新内容、只需要理解输入的任务,如:分类(文本分类、情感分析等)、信息抽取、序列标注等。在这种架构中,所有的注意力机制和网络层都集中在编码输入数据上,其输出通常是关于输入的复杂语义表示。谷歌的BERT、智谱AI发布的第四代基座大语言模型GLM4Decoder-Only也被称为
- LlamaIndex + 智谱大模型GLM 实现智能代理(Agent)
不吃辣的陈
人工智能pythonlangchainfaiss自然语言处理
LlamaIndex+智谱大模型GLM实现智能代理(Agent)文章目录LlamaIndex+智谱大模型GLM实现智能代理(Agent)前言一、模型加载二、向量数据库加载1.向量库加载2.向量库生成三、方法创建1.创建FAISS查询引擎适配器(本地外挂知识库查询)2.数学计算工具函数(计算器)3.WebSearch工具(网络搜索)4.手机号码归属地信息(号码归属地工具)四、FunctionTool
- 新手向:代码编写工具推荐
nightunderblackcat
基础环境配置notepad++pycharmpythonintellij-ideajavac++c#
开发者兵器谱:我的高效编码六大神器深度解析在软件开发的世界里,得心应手的工具如同侠客手中的利剑。经过多年的项目锤炼,我精心打磨了一套开发工具链,它们各有所长,助我在不同战场上游刃有余。下面就来深度剖析这六位“数字战友”:一、轻骑兵:Notepad++——闪电编辑与文本处理的王者核心定位:超轻量级文本/代码编辑器,启动如闪电,资源占用极低。看家本领:列编辑模式:Alt+鼠标拖拽或Alt+Shift+
- Python和MATLAB数字信号波形和模型模拟
要点Python和MATLAB实现以下波形和模型模拟以给定采样率模拟正弦信号,生成给定参数的方波信号,生成给定参数隔离矩形脉冲,生成并绘制线性调频信号。快速傅里叶变换结果释义:复数离散傅里叶变换、频率仓和快速傅里叶变换移位,逆快速傅里叶变换移位,数值NumPy对比观察FFT移位和逆FFT移位。离散时域表示:余弦信号生成取样,使用FFT频域信号表示,使用FFT计算离散傅里叶变换DFT,获得幅度谱并提
- 《AI办公类工具PPT系列之七——智谱清言》
再见孙悟空_
【2025AI工具合集】人工智能iSlideAIAI智能PPTpowerpointAIPPTPPT
一.简介官网地址为chatglm.cn智谱清言(也被称为ChatGLM)是一款基于大模型技术的人工智能产品,旨在通过其强大的自然语言处理能力,为用户提供高效、智能的交互体验。该产品不仅具备广泛的应用场景,还能够在多个领域内实现深度学习和自我优化。二.功能介绍内容创作:创意写作:帮助用户进行故事、诗歌等文学作品的创作。媒体写作:辅助撰写新闻稿、社交媒体帖子等内容。写作辅助:提供写作建议、结构安排和编
- “组学”的数据结构与概念
不秃的卤蛋
组学多组学人工智能深度学习
1.组学数据:生命系统的分子层面快照定义:组学数据是指利用高通量实验技术,对生物样本(细胞、组织、个体等)在特定状态下,某一类生物分子全集进行系统性、大规模定量测量所产生的数据集。核心特征:全局性(Global):目标是对该分子层面尽可能完整的覆盖(如全基因组、全转录组、全蛋白质组),而非单个分子。高通量(High-throughput):依赖先进平台(如二代/三代测序、高分辨率质谱、芯片技术),
- C#单例模式的十八般兵器:让对象“独一无二”的终极秘籍
墨夶
C#学习资料c#单例模式javascript
一、基础兵器谱:懒汉式单例1.1基础版(线程不安全)“皇帝还没起床,就被群臣吵醒”publicclassSingletonLazy_Basic{//私有构造函数:防止外部newprivateSingletonLazy_Basic(){}//共享实例:初始为nullprivatestaticSingletonLazy_Basic_instance;//全局访问点:第一次调用时创建实例publicst
- matlab 频谱图例子_做EEG频谱分析,看这一篇文章就够了!
weixin_39985286
matlab频谱图例子
所谓频谱分析,又称为功率谱分析或者功率谱密度(PowerSpectralDensity,PSD)分析,实际就是通过一定方法求解信号的功率power随着频率变化曲线。笔者在这里对目前常用的频谱分析方法做一个总结,并重点介绍目前EEG分析中最常用的频谱分析方法,并给出相应的Matlab程序。1.频谱分析的方法有哪些?目前来说,功率谱分析的方法大致可以分为两大类:第一类是经典的功率谱计算方法,第二类是现
- 【AIGC半月报】AIGC大模型启元:2024.06(上)
LeeZhao@
AIGCAIGC人工智能AIAgent
AIGC大模型启元:2024.06(上)(1)ChatTTS(语音合成项目)(2)Mamba-2(大模型新架构Mamba升级)(3)GLM-49B(智谱开源LLM)(4)Seed-TTS(字节语音合成)(5)QWen2(阿里大模型)(6)VideoReTalking(数字人对口型)(7)StableDiffusion3Medium(文生图更新)(8)DreamMachine(LumaAI文生视频)
- 【打卡】基金金融问答
来两个炸鸡腿
金融AIGC
文章目录任务1初始大模型与Agent大模型介绍ChatGLMAgent介绍特点任务2ChatGLMAPI-Python同步调用异步调用正则表达式Agent具体任务请添加图片描述任务3数据库内容解析SQLAgent任务1初始大模型与Agent大模型介绍GLM是智谱AI推出的新一代基座大模型,相比上一代有着显著提升的性能,逼近GPT-4。GLM支持更长的上下文(128k),具备强大的多模态能力,并且推
- 如何使用质谱AI一键解锁创意构图
神一样的老师
使用技巧人工智能
目录引言质谱API的文生图API接口请求请求参数响应参数测试结束语引言想象一下,只需用文字描述你脑海中的画面,AI就能瞬间将其转化为逼真或充满创意的图像。这不再是科幻小说,而是质谱AI的CogView模型带来的强大能力!无论是精准还原细节,还是打造个性化艺术风格,CogView都能通过对文本的深刻理解,实现高效、精准的图像生成。现在,通过质谱AI开放平台提供的文生图API,开发者可以轻松地将这一视
- RAG 工业落地方案框架(Qanything、RAGFlow、FastGPT、智谱RAG)细节比对!CVPR自动驾驶最in挑战赛赛道,全球冠军被算力选手夺走了
代码讲故事
学术相关自动驾驶人工智能机器学习RAGCVPRQanythingFastGPT
RAG工业落地方案框架(Qanything、RAGFlow、FastGPT、智谱RAG)细节比对!CVPR自动驾驶最in挑战赛赛道,全球冠军被算力选手夺走了。本文详细比较了四种RAG工业落地方案——Qanything、RAGFlow、FastGPT和智谱RAG,重点分析了它们在知识处理、召回模块、重排模块、大模型处理、Web服务和切词处理等方面的具体实现。Qanything在rerank模块设计上
- 【C语言】输入数字后的重要getchar()
疯狂的小菜鸡.
c语言开发语言学习算法
相信你是最棒哒!!!文章目录一、输出音符位置正确代码注释版简洁版二、棋盘中的字母正确代码注释版简洁版总结一、输出音符位置你正在玩你最喜欢的节奏游戏,osu!mania。你的谱面的布局由n行和4列组成。由于底部的音符更近,因此你将首先处理最底部的行,最后处理最顶部的行。每一行将恰好包含一个音符,用'#'表示。对于每个音符1,2,…,按照处理的顺序,输出音符出现的列号。输入第一行包含t(1≤≤100)
- 【Spring AI 0基础教程】2、基础篇 | 聊天客户端 - 智能健康助手
Brian Xia
【SpringAI0基础教程】spring人工智能javaai
基础篇|聊天客户端-智能健康助手一、学习目标在上一小节中,我们学习了SpringAI最基础的使用方法,但是大家可以思考一个问题,目前我们使用的是智谱提供的AI大模型,如果我想切换成最近最火的DeepSeek大模型,那应该怎么处理呢?所以这一小节,我们将学习SpringAI中推荐使用的ChatClient来完成其他大模型的接入,并完成另外一个新的案例:智能健康助手。我们先来看下最终的效果:这个智能健
- Python LangChain入门教程 1-使用LangChain和AI对话
买苏打水送苏打
langchainpython人工智能
LangChain是一个用于开发由大型语言模型(LLMs)驱动的应用程序的框架。在使用LangChain框架前,先导入LangChain#这里根据你使用的AI进行引入,我使用的是智谱清言的AIfromlangchain_community.chat_modelsimportChatZhipuAI#这里导入的是消息类型fromlangchain_core.messagesimportAIMessag
- springboot3.x对接AI智谱清言
雨果talk
人工智能aispringboot
spring引入智谱清言ai包org.springframework.aispring-ai-bom1.0.0-SNAPSHOTpomimportspring-snapshotsSpringSnapshotshttps://repo.spring.io/snapshotfalseorg.springframework.aispring-ai-starter-model-zhipuaiio.swag
- python实现DFT并绘制功率谱 (附完整源码)
源代码大师
Python实战教程python开发语言
python实现DFT并绘制功率谱以下是使用Python实现离散傅里叶变换(DFT)并绘制功率谱的完整源码。该代码包括生成一个示例信号、手动计算DFT、计算功率谱以及使用Matplotlib绘制结果。importnumpyasnpimportmatplotlib.pyplotaspltdefDFT(x):"""计算离散傅里叶变换(DFT)参数:x(numpy.ndarray):输入时域信号返回:X
- 频域圆形区域划分+可视化
super春卷
图像处理
频域圆形区域划分+可视化一、简单说明 这是之前写的一部分创新性代码,现在整理讲解一下。 首先,通过FFT(快速傅里叶变化)进行频域分析是一般性的常规操作,通过频域的频域特征分析图像整体或是图像分块之后的小图像块,计算幅度谱最高值、均值或是标准差,可以去反映振动程度/振动强度/频域特征。 (这里补一下对于频谱和幅度谱的理解,简单来说,傅里叶变化将空间中的二维坐标点变为频谱中的频点,频点坐标(u
- C# 定时器周期获取线程数
小盼你最萌哒
C#
在C#中我们往往喜欢多开线程,有些线程我们是写完就不管了,有时候不知道有没有执行,但是在debug的时候想在页面上监控线程数量,心中对自己写的程序有个谱。话不多说,查看线程数量代码如下:ProcessmyProcess=Process.GetCurrentProcess();//获取该进程ProcessThreadCollectionPTC=myProcess.Threads;//获取其关联的线程
- 让AI弹琴作曲不再是梦:Python+深度学习玩转自动化音乐创作
Echo_Wish
Python进阶人工智能python深度学习
让AI弹琴作曲不再是梦:Python+深度学习玩转自动化音乐创作一、AI也能谱出动人的旋律?真不是科幻!还记得小时候学钢琴时老师的那句经典:“感觉不到情绪的乐句,是没灵魂的。”当时我一边练琴一边想:要是有个机器能帮我写谱、调性又不跑调就好了!结果几年后,真被我碰上了。这年头,AI不仅能写小说、画画、生成视频,连音乐都开始“对标贝多芬”了。你没听错,现在的AI已经可以基于训练好的模型,自动生成旋律、
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号