- Python辅助高效背诵记忆知识点(零基础教程,手机版可用)
Python辅助高效背诵记忆知识点(零基础教程,手机版可用)完整程序代码如何添加背诵材料?Type1Type2如何运行程序?如果你是一名学生(小学生、初中生、高中生、大学生……),总是苦于繁多的知识点难以背诵,苦于每天的英语默写毫无对策,苦于语文名篇名句默写易混淆的字词总是分辨不清……不妨运用如下的这段Python代码辅助背诵,可以大大提高记忆效率。本人高中三年——一直到高考前夕——就是靠这段自编
- 数字化时代练歌神器:卡拉OK点唱机应用全解析
本文还有配套的精品资源,点击获取简介:卡拉OK点唱机是一款专为音乐爱好者和练歌者设计的软件,提供网络点播、音轨分离、音调调整、评分系统、回放功能和歌词同步显示等辅助功能,帮助用户随时随地进行歌唱练习,提升演唱技巧。高级版本还提供专业音效处理功能,使得卡拉OK点唱机成为业余爱好者和专业歌手的理想训练工具。1.网络点播功能的实现与应用网络点播功能改变了我们获取媒体内容的方式,赋予了用户前所未有的主动性
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- 深入解析 SAE 训练输出文件:结构与意义
阿正的梦工坊
LLM语言模型人工智能自然语言处理
深入解析SAE训练输出文件:结构与意义在利用SAELens框架进行稀疏自编码器(SparseAutoencoder,SAE)训练时,训练完成后会生成一组关键文件,这些文件记录了模型的权重、状态以及相关信息。本文将详细解析路径SAELens/tutorials/checkpoints/n78ngo5e/final_122880000下生成的四个文件:activations_store_state.s
- 【推荐算法课程二】推荐算法介绍-深度学习算法
盒子6910
运维视角下的广告业务算法推荐算法深度学习运维开发运维人工智能
三、深度学习在推荐系统中的应用3.1深度学习推荐模型的演化关系图3.2AutoRec——单隐层神经网络推荐模型3.2.1AutoRec模型的基本原理AutoRec模型是一个标准的自编码器,它的基本原理是利用协同过滤中的共现矩阵,完成物品向量或者用户向量的自编码。再利用自编码的结果得到用户对物品的预估评分,进而进行推荐排序。什么是自编码器?自编码器是指能够完成数据“自编码”的模型。无论是图像、音频,
- 深入解析VAE:从理论到PyTorch实战,一步步构建你的AI“艺术家”
电脑能手
人工智能深度学习python
摘要:你是否好奇AI如何“凭空”创造出从未见过的人脸或画作?变分自编码器(VAE)就是解开这一谜题的关键钥匙之一。本文将带你从零开始,深入浅出地剖析VAE的迷人世界。我们将用生动的比喻解释其核心思想,拆解其背后的数学原理(KL散度与重参数技巧),并最终用PyTorch代码手把手地构建、训练和可视化一个完整的VAE模型。无论你是初学者还是有一定经验的开发者,相信这篇文章都能让你对生成模型有一个全新的
- Dimba: Transformer-Mamba Diffusion Models————3 Methodology
图解图片中的每个模块详解1.文本输入(Text)描述:输入的文本描述了一个具有具体特征的场景。功能:提供关于要生成图像的详细信息。2.T5模型(TexttoFeature)描述:使用T5模型将文本转换为特征向量。功能:提取文本中的语义信息,为后续的图像生成提供条件。3.图像输入(Image)描述:输入图像通过变分自编码器(VAE)编码器处理。功能:将图像转换为潜在表示,用于添加噪声并进行扩散过程。
- python中leap是什么意思_leap)是什么意思
weixin_39639514
1.一羊跳过沟,众羊跟着跳。2.澜沧江在德钦奔流的150公里,是最险峻、最瑰丽、最汹涌的150公里、山形直入江中,江在几近垂直的两山间如困兽一般,吼声如沸,漩澜连续不绝,浪跃巨石,飞溅四裂。3.leap)的近义词3.除此之外,国民也期待更多的本土企业能够找到困境中的一丝缝隙逆流跃进,林立于世界众强的行列之中。4.很高兴您的宝宝男童或女童与绣腾飞的婴儿床寝具。5.因此,1600,1984年和2000
- Vue3音乐播放器组件,可显示歌词
张苹果博客
vue前端1024程序员节
在线体验地址原文可体验1,安装npminstallapple-music-player或yarnaddapple-music-player2,在main.ts中引入import{createApp}from'vue'importAppfrom'./App.vue'importAppleMusicPlayerfrom'apple-music-player'createApp(App).use(App
- HarmonyOS NEXT仓颉开发语言实战案例:简约音乐播放页
幽蓝计划
开发语言harmonyos
偶然间看到一个非常漂亮的音乐播放器设计图,忍不住想拿仓颉语言来练练手,当漂亮的设计图遇到优美的开发语言,简直是天作之合。看到这个页面,我们先做一个简单的分析。整个页面分为上中下三个部分,顶部为导航栏,底部是歌词工具栏,剩下的就是中间的歌曲信息和控制按钮部分。它们的部分方式是比较简单的纵向布局。页面大致结构代码如下:Column{//导航栏Stack{Text('NowPlaying').fontS
- 说唱僵尸网络RapperBot卷土重来,5万余台设备遭劫持
FreeBuf-
网络
一个名为RapperBot的僵尸网络正以技术进化为矛、网络时代狂妄为盾,对全球超过5万台设备发起攻击。与其他隐匿行事的恶意软件不同,RapperBot不仅引起威胁分析师的注意——它甚至嚣张地留下了说唱歌词。根据XLAB最新报告,这个最早由中国国家互联网应急中心(CNCERT)在2022年披露(可追溯至2021年攻击活动)的僵尸网络,在2025年以超过5万个活跃节点再度肆虐,并开始要求受害者支付门罗
- Qt QML实现Windows桌面歌词动态播放效果
luoyayun361
QtQMLqtQt歌词播放效果
前言使用Qt5.15.2,QML实现简单的歌词动态播放效果。效果图如下:注:这里只是为了演示播放效果,并未真正加载音频进行播放。可以在此基础上进行扩展。正文关键代码QML部分importQtQuick2.15importQtQuick.Window2.15importQtQuick.Controls2.15importQtQuick.Layouts1.15importLyricsPlayback1
- Latent World Model 架构实战:具身智能中的隐空间建模与状态压缩
观熵
具身智能(EmbodiedAI)架构人工智能具身智能
LatentWorldModel架构实战:具身智能中的隐空间建模与状态压缩关键词具身智能、LatentWorldModel、状态建模、变分自编码器、感知压缩、动态预测、多模态对齐、认知建模、世界模型、状态表示学习摘要在具身智能系统中,世界模型(WorldModel)构建是认知能力的核心,而其中的“隐空间建模与状态压缩”技术决定了智能体对环境的理解深度与动作决策的效率。本文基于2025年最新开源项目
- 生成对抗网络(GAN)与深度生成模型实战
软考和人工智能学堂
人工智能Python开发经验#DeepSeek快速入门开发语言
1.生成模型基础与GAN原理1.1生成模型概览生成模型是深度学习中的重要分支,主要分为以下几类:变分自编码器(VAE):基于概率图模型的生成方法生成对抗网络(GAN):通过对抗训练学习数据分布自回归模型:PixelCNN、WaveNet等流模型(Flow-basedModels):基于可逆变换的精确密度估计扩散模型(DiffusionModels):最新兴起的生成方法1.2GAN核心思想GAN由生
- SAE层、BPNN层结合的深度学习模型
sbc-study
深度学习人工智能机器学习
EarlyFaultDetectionofMachineToolsBasedonDeepLearningandDynamicIdentificationBoLuo,HaotingWang,HongqiLiu,BinLi,andFangyuPengIEEETRANSACTIONSONINDUSTRIALELECTRONICS,VOL.66,NO.1,JANUARY2019一SAE层(栈式自编码器层-
- AI学习指南深度学习篇-变分自编码器的应用与扩展
俞兆鹏
AI学习指南ai
AI学习指南深度学习篇-变分自编码器的应用与扩展目录引言变分自编码器概述变分自编码器在图像生成中的应用变分自编码器在图像重建中的应用
- 变分自编码器的扩展模型:条件VAE
AI天才研究院
AIAgent应用开发LLM大模型落地实战指南AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
变分自编码器的扩展模型:条件VAE作者:禅与计算机程序设计艺术1.背景介绍近年来,变分自编码器(VariationalAutoencoder,VAE)作为一种强大的生成式模型,在图像生成、文本生成等任务中展现出了卓越的性能。VAE通过学习数据分布的潜在表示,能够生成与训练数据相似的新样本。然而,标准的VAE模型无法对生成的内容进行控制,这限制了它在实际应用中的灵活性。为了解决这一问题,研究人员提出
- [论文笔记] [2008] [ICML] Extracting and Composing Robust Features with Denoising Autoencoders
Alexzhuan
DL神经网络机器学习
在06年以前,想要去训练一个多层的神经网络是比较困难的,主要的问题是超过两层的模型,当时没有好的策略或方法使模型优化的很好,得不到预期的效果。在06年,Hinton提出的stackedautoencoders改变了当时的情况,那时候的研究者就开始关注各种自编码模型以及相应的堆叠模型。这篇的作者提出的DAE(DenoisingAutoencoders)就是当时蛮有影响力的工作。那个时候多层模型效果得
- Qt:一个简洁漂亮的高仿网易云播放器
浅梦ヽ墨汐
qtqtc++多进程多线程即时通信
Qt:一个简洁漂亮的高仿网易云播放器界面动图展示:功能简述:1.音乐的播放、暂停2.音乐的上、下一曲3.进度条显示进度、滑动条调整进度4.音量的滑动调整5.列表切换歌曲6.播放、暂停的唱片旋转7.主界面的三张图片任意切换8.桌面歌词9.界面切换的全部歌词显示10.主界面背景切换11.个人信息界面弹窗12.播放模式切换(单曲、顺序、随机)13.音质切换项目工程后续上传GitHub界面动图展示:功能简
- 【深度学习】自编码器:数据压缩与特征学习的神经网络引擎
瑶光守护者
深度学习学习神经网络人工智能机器学习强化学习
作者选择了由IanGoodfellow、YoshuaBengio和AaronCourville三位大佬撰写的《DeepLearning》(人工智能领域的经典教程,深度学习领域研究生必读教材),开始深度学习领域学习,深入全面的理解深度学习的理论知识。之前的文章参考下面的链接:【深度学习】线性因子模型:数据降维与结构解析的数学透镜【学习笔记】强化学习:实用方法论【学习笔记】序列建模:递归神经网络(RN
- 使用 Python + ExecJS 获取网易云音乐歌曲歌词
我把把C
python开发语言
使用Python+ExecJS获取网易云音乐歌曲歌词在本篇博客中,我们将通过一个完整的Python脚本,利用execjs模块调用JavaScript代码,成功获取网易云音乐的歌曲歌词。整个过程涵盖了加密参数的生成、API请求发送与歌词提取,适合有一定爬虫基础的同学参考与实践。环境准备Python库依赖请先确保安装了以下依赖:pipinstallrequestsPyExecJSNode.js环境由于
- 生成式AI模型学习笔记
Humbunklung
机器学习人工智能学习笔记机器学习深度学习
文章目录生成式AI模型1.定义2.生成式模型与判别式模型3.深度生成式模型的类型3.1能量模型3.2变分自编码3.2.1变分自编码器(VariationalAutoencoder,VAE)简介3.2.2代码示例(以PyTorch为例)3.3生成对抗网络3.4流模型3.4.1流模型简介3.4.2NICE:开创性流模型3.4.3流模型与VAE、GAN的区别3.5自回归模型3.5.1自回归模型简介3.5
- 从 “被动拦截” 到 “智能预判”:下一代防火墙的五大核心技术突破
柏睿网络
人工智能
传统防火墙如同仅能按"剧本"执行的机械门卫,面对复杂多变的网络威胁时,常因规则滞后、检测粗放而陷入被动。下一代防火墙(NGFW)通过五大核心技术突破,构建起以"智能预判"为核心的主动防御体系,实现从"事后响应"到"事前阻断"的范式革命。一、AI驱动的威胁检测引擎:从规则匹配到行为建模技术突破机器学习驱动的异常检测抛弃传统的"特征码匹配"模式,采用无监督学习算法(如孤立森林、VAE变分自编码器)构建
- NLP资源汇总和工具汇总
AI拉呱
机器学习深度学习实例讲解与分析
NLP资源汇总和工具汇总涉及内容包括:中英文敏感词、语言检测、中外手机/电话归属地/运营商查询、名字推断性别、手机号抽取、身份证抽取、邮箱抽取、中日文人名库、中文缩写库、拆字词典、词汇情感值、停用词、反动词表、暴恐词表、繁简体转换、英文模拟中文发音、汪峰歌词生成器、职业名称词库、同义词库、反义词库、否定词库、汽车品牌词库、汽车零件词库、连续英文切割、各种中文词向量、公司名字大全、古诗词库、IT词库
- 入选 ICML 2025,清华/人大/字节提出首个跨分子种类统一生成框架 UniMoMo,实现多类型药物分子设计
hyperai
清华大学刘洋老师组、人民大学高瓴人工智能学院黄文炳老师组、字节跳动AI制药团队共同提出了一种跨分子种类统一生成框架UniMoMo。该框架基于分子片段(block)对不同种类的分子进行统一表示,使用变分自编码器对每个block的全原子构象进行压缩,并在压缩后的隐空间进行几何扩散建模(diffusion),从而实现对同一靶点不同结合分子种类(小分子、多肽、抗体)的设计。UniMoMo在多类分子任务基准
- ASC格式惯导数据文件转IMR格式文件
梦想是造卫星
c++惯性导航组合导航
我们使用惯导采集数据之后,如果需要用现有软件进行解算,比如POSMind等等,就会涉及到IMR格式的惯导数据文件。而NovAtelConvert转换软件只能将原始DAT格式的文件转成ASCLL文件,因此我自编程实现了ASC格式文件到IMR格式文件的转换。ASC格式文件ASCII数据格式如下:表1ASC文件数据含义数据内容含义%RAWIMUSAIMU原始文件头,需要提取有该符号标识的这一行数据429
- 【课堂笔记】生成对抗网络 Generative Adversarial Network(GAN)
zyq~
机器学习笔记生成对抗网络人工智能机器学习概率论GAN
文章目录问题背景原理更新过程判别器生成器问题背景 一方面,许多机器学习任务需要大量标注数据,但真实数据可能稀缺或昂贵(如医学影像、稀有事件数据)。如何在少量数据中达到一个很好的训练效果是一个很重要的问题。 另一方面,传统生成模型(如变分自编码器VAE)生成的样本往往模糊或缺乏多样性,难以捕捉真实数据的复杂分布(如高分辨率图像、复杂文本等)。 生成式对抗网络(GAN)提出了用生成器(Gener
- 常见网络攻击及解决方案
你才是向阳花
http浏览器通信网络安全web安全
网络安全是开发中常常会遇到的情况,为什么会遇到网络攻击,网络攻击是如何进行的,如何抵御网络攻击,都是我们需要思考的问题。为什么会遇到网络攻击?以下是一些主要的因素:技术漏洞:软件或操作系统中存在未修补的安全漏洞,这些漏洞可能源自编程错误、设计缺陷或不当的系统配置。黑客经常利用这些漏洞来入侵系统、植入恶意软件或窃取数据。弱密码:使用简单易猜或重复使用的密码使攻击者能够轻易地通过暴力破解或字典攻击获得
- Python 爬虫实战:解析 JSON 数据爬取 QQ 音乐歌单(歌单分类与歌曲元数据提取)
yansideyucsdn
python爬虫实战python爬虫json
一、项目启动篇:明确目标与合规边界1.1需求拆解:定义核心抓取字段QQ音乐作为国内领先的音乐流媒体平台,其歌单数据具有极高的分析价值。我们计划抓取以下核心字段:数据层级抓取字段应用场景示例歌单维度歌单ID、名称、分类标签、播放量音乐流行趋势分析、歌单推荐系统歌曲维度歌曲ID、名称、歌手、专辑、时长音乐版权分析、用户偏好建模扩展维度歌词文本、评论数据、发布时间情感分析、社交影响力研究1.2法律风险提
- 一文解析13大神经网络算法模型架构
攻城狮7号
AI前沿技术要闻深度学习神经网络人工智能机器学习
目录一、引言:神经网络的演进脉络二、基础架构:深度学习的基石2.1人工神经网络(ANN)2.2深度神经网络(DNN)三、专项任务架构:领域定制化突破3.1卷积神经网络(CNN)3.2循环神经网络(RNN)3.3图神经网络(GNN)四、生成模型:从数据到创造4.1生成对抗网络(GAN)4.2变分自编码器(VAE)4.3扩散模型(DiffusionModels)五、现代架构:大模型的核心引擎5.1Tr
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache