消息队列中间件

如何保证消息的顺序性

我举个例子,我们以前做过一个 mysql binlog 同步的系统,压力还是非常大的,日同步数据要达到上亿,就是说数据从一个 mysql 库原封不动地同步到另一个 mysql 库里面去(mysql -> mysql)。常见的一点在于说比如大数据 team,就需要同步一个 mysql 库过来,对公司的业务系统的数据做各种复杂的操作。
你在 mysql 里增删改一条数据,对应出来了增删改 3 条 binlog 日志,接着这三条 binlog 发送到MQ 里面,再消费出来依次执行,起码得保证人家是按照顺序来的吧?不然本来是:增加、修改、删除;你愣是换了顺序给执行成删除、修改、增加,不全错了么。
本来这个数据同步过来,应该最后这个数据被删除了;结果你搞错了这个顺序,最后这个数据保留下来了,数据同步就出错了。
先看看顺序会错乱的俩场景:

**RabbitMQ:**一个 queue,多个 consumer。比如,生产者向 RabbitMQ 里发送了三条数据,顺序依次是 data1/data2/data3,压入的是 RabbitMQ 的一个内存队列。有三个消费者分别从 MQ中消费这三条数据中的一条,结果消费者2先执行完操作,把 data2 存入数据库,然后是data1/data3。这不明显乱了

Kafka:比如说我们建了一个 topic,有三个 partition。生产者在写的时候,其实可以指定一个key,比如说我们指定了某个订单 id 作为 key,那么这个订单相关的数据,一定会被分发到同一个partition 中去,而且这个 partition 中的数据一定是有顺序的。消费者从 partition 中取出来数据的时候,也一定是有顺序的。到这里,顺序还是 ok 的,没有错乱。接着,我们在消费者里可能会搞多个线程来并发处理消息。因为如果消费者是单线程消费处理,而处理比较耗时的话,比如处理一条消息耗时几十 ms,那么 1 秒钟只能处理几十条消息,这吞吐量太低了。而多个线程并发跑的话,顺序可能就乱掉了。
消息队列中间件_第1张图片

解决方案
RabbitMQ
拆分多个 queue,每个 queue 一个 consumer,就是多一些 queue 而已,确实是麻烦点;或者就一个queue 但是对应一个 consumer,然后这个 consumer 内部用内存队列做排队,然后分发给底层不同的 worker 来处理。
消息队列中间件_第2张图片
Kafka
一个 topic,一个 partition,一个 consumer,内部单线程消费,单线程吞吐量太低,一般不会用这个。
写 N 个内存 queue,具有相同 key 的数据都到同一个内存 queue;然后对于 N 个线程,每个线程分别消费一个内存 queue 即可,这样就能保证顺序性。
消息队列中间件_第3张图片

如何保证消息队列的高可用?

RabbitMQ 有三种模式:单机模式、普通集群模式、镜像集群模式。

单机模式
单机模式,就是 Demo 级别的,一般就是你本地启动了玩玩儿的,没人生产用单机模式。

普通集群模式(无高可用性)
普通集群模式,意思就是在多台机器上启动多个 RabbitMQ 实例,每个机器启动一个。你创建的queue,只会放在一个 RabbitMQ 实例上,但是每个实例都同步 queue 的元数据(元数据可以认为是queue 的一些配置信息,通过元数据,可以找到 queue 所在实例)。你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从 queue 所在实例上拉取数据过来。
消息队列中间件_第4张图片
这种方式确实很麻烦,也不怎么好,没做到所谓的分布式,就是个普通集群。因为这导致你要么消费者每次随机连接一个实例然后拉取数据,要么固定连接那个 queue 所在实例消费数据,前者有数据拉取的开销,后者导致单实例性能瓶颈
而且如果那个放 queue 的实例宕机了,会导致接下来其他实例就无法从那个实例拉取,如果你开启了消息持久化,让 RabbitMQ 落地存储消息的话,消息不一定会丢,得等这个实例恢复了,然后才可以继续从这个 queue 拉取数据。
所以这个事儿就比较尴尬了,这就没有什么所谓的高可用性这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个queue 的读写操作。

镜像集群模式(高可用性)
这种模式,才是所谓的 RabbitMQ 的高可用模式。跟普通集群模式不一样的是,在镜像集群模式下,你
创建的 queue,无论元数据还是 queue 里的消息都会存在于多个实例上,就是说,每个 RabbitMQ 节点都有这个 queue 的一个完整镜像,包含 queue 的全部数据的意思。然后每次你写消息到 queue 的时候,都会自动把消息同步到多个实例的 queue 上。
消息队列中间件_第5张图片
那么如何开启这个镜像集群模式呢?其实很简单,RabbitMQ 有很好的管理控制台,就是在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候是可以要求数据同步到所有节点的,也可以要求同步到指定数量的节点,再次创建 queue 的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。
这样的话,好处在于,你任何一个机器宕机了,没事儿,其它机器(节点)还包含了这个 queue 的完整数据,别的 consumer 都可以到其它节点上去消费数据。坏处在于,第一,这个性能开销也太大了吧,消息需要同步到所有机器上,导致网络带宽压力和消耗很重!第二,这么玩儿,不是分布式的,就没有扩展性可言了,如果某个 queue 负载很重,你加机器,新增的机器也包含了这个 queue 的所有数据,并没有办法线性扩展你的 queue。你想,如果这个 queue 的数据量很大,大到这个机器上的容量无法容纳了,此时该怎么办呢?

Kafka 的高可用性
Kafka 一个最基本的架构认识:由多个 broker 组成,每个 broker 是一个节点;你创建一个 topic,这个 topic 可以划分为多个 partition,每个 partition 可以存在于不同的 broker 上,每个 partition 就放一部分数据。

这就是天然的分布式消息队列,就是说一个 topic 的数据,是分散放在多个机器上的每个机器就放一部分数据

实际上 RabbitMQ 之类的,并不是分布式消息队列,它就是传统的消息队列,只不过提供了一些集群、HA(High Availability, 高可用性) 的机制而已,因为无论怎么玩儿,RabbitMQ 一个 queue 的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个 queue 的完整数据。Kafka 0.8 以前,是没有 HA 机制的,就是任何一个 broker 宕机了,那个 broker 上的 partition 就废
了,没法写也没法读,没有什么高可用性可言。比如说,我们假设创建了一个 topic,指定其 partition 数量是 3 个,分别在三台机器上。但是,如果第二台机器宕机了,会导致这个 topic 的 1/3 的数据就丢了,因此这个是做不到高可用的。
消息队列中间件_第6张图片
Kafka 0.8 以后,提供了 HA 机制,就是 replica(复制品) 副本机制。每个 partition 的数据都会同步到其它机器上,形成自己的多个 replica 副本。所有 replica 会选举一个 leader 出来,那么生产和消费都跟这个 leader 打交道,然后其他 replica 就是 follower。写的时候,leader 会负责把数据同步到所有 follower 上去,读的时候就直接读 leader 上的数据即可。只能读写 leader?很简单,要是你可以随
意读写每个 follower,那么就要 care 数据一致性的问题
,系统复杂度太高,很容易出问题。Kafka 会均匀地将一个 partition 的所有 replica 分布在不同的机器上,这样才可以提高容错性。
消息队列中间件_第7张图片
这么搞,就有所谓的高可用性了,因为如果某个 broker 宕机了,没事儿,那个 broker上面的 partition在其他机器上都有副本的。如果这个宕机的 broker 上面有某个 partition 的 leader,那么此时会从follower 中重新选举一个新的 leader 出来,大家继续读写那个新的 leader 即可。这就有所谓的高可用性了。

写数据的时候,生产者就写 leader,然后 leader 将数据落地写本地磁盘,接着其他 follower 自己主动从 leader 来 pull 数据。一旦所有follower 同步好数据了,就会发送 ack 给 leader,leader 收到所有follower 的 ack 之后,就会返回写成功的消息给生产者。(当然,这只是其中一种模式,还可以适当调整这个行为)
消费的时候,只会从 leader 去读,但是只有当一个消息已经被所有 follower 都同步成功返回 ack 的时候,这个消息才会被消费者读到。

为什么使用消息队列?

其实就是问问你消息队列都有哪些使用场景,然后你项目里具体是什么场景,说说你在这个场景里用消息队列是什么?
面试官问你这个问题,期望的一个回答是说,你们公司有个什么业务场景,这个业务场景有个什么技
术挑战,如果不用 MQ 可能会很麻烦,但是你现在用了 MQ 之后带给了你很多的好处。
要回答这个问题,我们得先说一下消息队列常见的使用场景,其实场景有很多,但是比较核心的只有 3个:解耦、异步、削峰

解耦
假设有这么个场景。A 系统发送数据到 BCD 三个系统,通过接口调用发送。如果 E 系统也要这个数据呢?那如果 C 系统现在不需要了呢?
在这个场景中,A 系统跟其它各种系统严重耦合,A 系统产生一条比较关键的数据,很多系统都需要 A系统将这个数据发送过来。A 系统要时时刻刻考虑 BCDE 四个系统如果挂了该咋办?要不要重发,要不要把消息存起来?
如果使用 MQ,A 系统产生一条数据,发送到 MQ 里面去,哪个系统需要数据自己去 MQ 里面消费。如果新系统需要数据,直接从 MQ 里消费即可;如果某个系统不需要这条数据了,就取消对 MQ 消息的消费即可。这样下来,A 系统压根儿不需要去考虑要给谁发送数据,不需要维护这个代码,也不需要考虑人家是否调用成功、失败超时等情况。

削峰
每天 0:00 到 12:00,A 系统风平浪静,每秒并发请求数量就 50 个。结果每次一到 12:00 ~ 13:00 ,每秒并发请求数量突然会暴增到 5k+ 条。但是系统是直接基于 MySQL 的,大量的请求涌入 MySQL,每秒钟对 MySQL 执行约 5k 条 SQL。
一般的 MySQL,扛到每秒 2k 个请求就差不多了,如果每秒请求到 5k 的话,可能就直接把 MySQL 给打死了,导致系统崩溃,用户也就没法再使用系统了。
但是高峰期一过,到了下午的时候,就成了低峰期,可能也就 1w 的用户同时在网站上操作,每秒中的请求数量可能也就 50 个请求,对整个系统几乎没有任何的压力。
如果使用 MQ,每秒 5k 个请求写入 MQ,A 系统每秒钟最多处理 2k 个请求,因为 MySQL 每秒钟最多处理 2k 个。A 系统从 MQ 中慢慢拉取请求,每秒钟就拉取 2k 个请求,不要超过自己每秒能处理的最大请求数量就 ok,这样下来,哪怕是高峰期的时候,A 系统也绝对不会挂掉。而 MQ 每秒钟 5k 个请求进来,就 2k 个请求出去,结果就导致在中午高峰期(1 个小时),可能有几十万甚至几百万的请求积压在 MQ 中。
这个短暂的高峰期积压是 ok 的,因为高峰期过了之后,每秒钟就 50 个请求进 MQ,但是 A 系统依然会按照每秒 2k 个请求的速度在处理。所以说,只要高峰期一过,A 系统就会快速将积压的消息给解决掉。

异步
A 系统接收一个请求,需要在自己本地写库,还需要在 BCD 三个系统写库,自己本地写库要 5ms,BCD 三个系统分别写库要 300ms、450ms、200ms。最终请求总延时是 3 + 300 + 450 + 200 =953ms,接近 1s,用户感觉搞个什么东西,慢死了慢死了。用户通过浏览器发起请求,等待个 1s,这几乎是不可接受的。
一般互联网类的企业,对于用户直接的操作,一般要求是每个请求都必须在 200 ms 以内完成,对用户几乎是无感知的。如果使用 MQ,那么 A 系统连续发送 3 条消息到 MQ 队列中,假如耗时 5ms,A 系统从接受一个请求到返回响应给用户,总时长是 3 + 5 = 8ms,对于用户而言,其实感觉上就是点个按钮,8ms 以后就直接返回了!

总结
综上所述,如果在当前系统中有以上几点需求时会使用消息队列来进行系统中的性能优化,用以提升用户体验度、满意度。那么有必要用当前系统中的一个使用案例来描述一下,说明当时决定使用MQ时的原因,主要使用MQ的哪个特性。如果能加上使用后的提升情况那就更好了。

Kafka、RabbitMQ、RocketMQ 都有什么区别,以及适合哪些场景?

kafka :
优点

性能卓越,单机写入TPS约在百万条/秒,最大的优点,就是吞吐量高。
时效性:ms级
可用性:非常高,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用
消费者采用Pull方式获取消息, 消息有序, 通过控制能够保证所有消息被消费且仅被消费一次;
有优秀的第三方Kafka Web管理界面Kafka-Manager;
在日志领域比较成熟,被多家公司和多个开源项目使用;

kafka高吞吐率的实现:
1.顺序读写:kafka将消息读写写入到了分区partition中,而分区消息是顺序读写的。顺序读写要远快于随机读写
2.零拷贝:生产者、消费者对于kafka中消息的操作都是采用零拷贝实现的
3.批量发送:kafka允许采用批量消息发送模式
4.消息压缩:kafka允许对消息集合进行压缩

功能支持:功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用
缺点:

Kafka单机超过64个队列/分区,Load会发生明显的飙高现象,队列越多,load越高,发送消息响应时间变长
使用短轮询方式,实时性取决于轮询间隔时间;
消费失败不支持重试;
不支持定时消息;
支持消息顺序,但是一台代理宕机后,就会产生消息乱序;
社区更新较慢;

rocketmq

RocketMQ出自 阿里公司的开源产品,用 Java 语言实现,在设计时参考了 Kafka,并做出了自己的一些改进。RocketMQ在阿里集团被广泛应用在订单,交易,充值,流计算,消息推送,日志流式处理,binglog分发等场景。

RocketMQ优点

单机吞吐量:十万级
可用性:非常高,分布式架构
消息可靠性:经过参数优化配置,消息可以做到0丢失
功能支持:MQ功能较为完善,还是分布式的,扩展性好
支持定时消息;
支持消费失败重试;
支持10亿级别的消息堆积,不会因为堆积导致性能下降
源码是java,我们可以自己阅读源码,定制自己公司的MQ,可以掌控

RocketMQ缺点:

支持的客户端语言不多,目前是java及c++,其中c++不成熟;
社区活跃度一般

bbitMq : 开源项目,社区活跃,中小型工时使用
rocketMq :大型公司,基础研发能力抢,使用rocketMq

流量削峰总结

1.对于秒杀这样的高并发场景业务,最基本的原则就是将请求拦截在系统上游,降低下游压力。如果
不在前端拦截很可能造成数据库(mysql、oracle等)读写锁冲突,甚至导致死锁,最终还有可能出现雪崩等场景。
2.划分好动静资源,静态资源使用CDN进行服务分发。
3.充分利用缓存(redis等):增加QPS,从而加大整个集群的吞吐量。
4.高峰值流量是压垮系统很重要的原因,所以需要Kafka等消息队列在一端承接瞬时的流量洪峰,在另一端平滑地将消息推送出去。

你可能感兴趣的:(编程环境,编程学习,面试,java-rabbitmq,rabbitmq,消息中间件)