- 【Go语言成长之路】 模糊测试
风华同学
Go语言成长之路golang开发语言后端单元测试
文章目录模糊测试一、前提二、创建项目三、添加待测试代码四、添加单元测试五、添加模糊测试模糊测试本教程介绍了Go中模糊测试的基础知识。通过模糊测试,随机数据会针对您的测试运行,以尝试找到漏洞或导致崩溃的输入。可以通过模糊测试发现的漏洞示例包括SQL注入、缓冲区溢出、拒绝服务和跨站点脚本攻击。注:Go语言中模糊测试已经内置,具体可以参考:GoFuzzingdocs,将来还会添加更多功能。一、前提Go1
- 【LLaMA 3实战】3、LLaMA 3长文本处理终极指南:从128K上下文到百万级文档实战
无心水
LLaMA3模型实战专栏LLaMALLaMA3长文本处理MetaAI大模型CSDN技术干货LLaMA3前沿模型实战
引言:长文本处理的技术跃迁当LLaMA3将上下文窗口扩展至128Ktokens(约8万字),长文本处理技术迎来了革命性突破。这不仅意味着模型能处理更复杂的文档,更开启了"全局认知"的新可能——从法律合同的全条款审查到代码仓库的跨文件重构,从金融报告的时序分析到医疗病历的全周期追踪。本文将系统拆解LLaMA3长文本能力的技术内核,提供工程级优化方案与实战技巧,助你突破长文本处理的算力瓶颈与应用边界。
- HTML前端的自动化构建工具使用
前端视界
前端艺匠馆前端html自动化ai
HTML前端的自动化构建工具使用:从手工作坊到智能工厂的蜕变关键词:前端构建工具、自动化流程、Gulp、Webpack、前端工程化摘要:本文将带你从前端开发的“手工作坊时代”出发,一步步理解为什么需要自动化构建工具,揭秘核心概念和工作原理,并通过实战案例教你用Gulp和Webpack搭建高效的前端工作流。无论你是刚入门的前端新手,还是想优化现有项目的开发者,都能在这里找到从“手动劳动”到“智能生产
- 【LLaMA 3实战】2、LLaMA 3对话能力全解析:从架构革新到多智能体实战指南
无心水
LLaMA3模型实战专栏llamaLLaMA3对话能力全解析LLaMA3AI大模型多智能体CSDN技术干货Meta
引言:LLaMA3对话能力的革命性突破当Meta发布LLaMA3时,其对话能力的跃升重新定义了开源大模型的边界。这款拥有128K上下文窗口的开源模型,不仅在MT-Bench评测中超越GPT-3.5,更通过分组查询注意力(GQA)等架构创新,实现了推理速度30%的提升。本文将从底层架构到应用实战,系统拆解LLaMA3对话能力的技术奥秘,包含核心机制解析、训练策略、工程优化及多智能体系统开发,助你全面
- TensorFlow运行时核心:DirectSession::Run全解析
Jay Kay
tfservingc++tensorflow分布式
TensorFlow运行时核心:DirectSession::Run全解析TensorFlow的本地执行模式通过DirectSession::Run实现高效计算图处理,其核心流程分为三个阶段:图剪枝生成ClientGraph、设备间图分裂、跨设备并发执行。下面结合源码层设计深入剖析各环节实现原理。一、图剪枝:从FullGraph到ClientGraph目标:根据Session::Run指定的输入(
- Java打造同城道路救援利器:车辆救援,全程无忧保障
省钱兄科技
java开发语言
Java打造同城道路救援利器:车辆救援,全程无忧保障在城市化进程加速、车辆保有量激增的背景下,传统道路救援模式因响应慢、资源分散、信息孤岛等问题,已难以满足用户对“秒级响应”的期待。基于Java技术栈构建的同城道路救援系统,通过精准定位、智能调度、全流程数字化管理三大核心能力,重新定义了救援行业的技术标准,成为车辆救援领域的标杆解决方案。一、精准定位:误差<3米,救援“零偏差”1.多源数据融合定位
- 数据结构——Queue队列(C++)
Chloe Weewer
数据结构c++数据结构
目录队列的概述知识基础队列的基本操作队列的存储方式代码实现(C++)类头(Linked_Queue.h)类的方法实现(Linked_Queue.cpp)构造函数拷贝构造函数析构函数判断队列是否为空(empty)入队(push)出队(pop)清空队列(clear)访问队首(front)与队尾(back)操作符重载=获取元素个数(size)练习:约瑟夫问题题目描述输入格式输出格式样例#1样例输入#1样
- Node.js 后端开发:与前端的完美结合
Node.js后端开发:与前端的完美结合关键词:Node.js、后端开发、前后端分离、RESTfulAPI、Express、性能优化、全栈开发摘要:本文深入探讨Node.js在后端开发中的优势及其与前端的完美结合方式。我们将从Node.js的核心特性出发,分析其适合后端开发的原因,详细介绍如何构建高性能的RESTfulAPI服务,探讨前后端分离架构的最佳实践,并通过实际项目案例展示Node.js如
- AI人工智能领域知识图谱在深度学习中的应用拓展
AI人工智能领域知识图谱在深度学习中的应用拓展关键词:知识图谱、深度学习、神经网络、图嵌入、知识表示学习、推理机制、应用场景摘要:本文深入探讨了知识图谱与深度学习的融合应用,系统性地分析了知识图谱在深度学习中的关键技术路径和应用场景。文章首先介绍了知识图谱的基本概念和表示方法,然后详细阐述了知识图谱与深度学习结合的多种技术路线,包括图神经网络、知识嵌入和推理机制等。接着通过具体案例展示了知识图谱增
- React用户交互事件
在React中处理用户交互事件(如点击、输入、提交等)的方式与原生JavaScript类似,但有一些语法差异和最佳实践。以下是常见交互事件的处理方法及代码示例:一、基本事件处理(点击、输入等)1.点击事件(onClick)importReact,{useState}from'react';constButtonExample=()=>{const[count,setCount]=useState(
- Tomcat性能调优指南
文章目录一、Tomcat性能调优概述为什么需要调优Tomcat?二、Tomcat架构与性能关键点三、JVM调优1.内存配置优化2.垃圾回收优化3.其他JVM优化参数四、连接器(Connector)调优1.NIOvsAPR/Native2.高级NIO配置五、线程池优化六、会话管理优化1.会话超时配置2.会话持久化选择七、静态资源处理优化1.启用Sendfile2.配置静态资源缓存八、其他优化措施1.
- equine在神经网络中建立量化不确定性
struggle2025
神经网络人工智能深度学习
一、软件介绍文末提供程序和源码下载众所周知,用于监督标记问题的深度神经网络(DNN)可以在各种学习任务中产生准确的结果。但是,当准确性是唯一目标时,DNN经常会做出过于自信的预测,并且无论测试数据是否属于任何已知标签,它们也总是进行标签预测。EQUINEwascreatedtosimplifytwokindsofuncertaintyquantificationforsupervisedlabel
- CARLsim开源程序 是一个高效、易用、GPU 加速的软件框架,用于模拟具有高度生物细节的大规模脉冲神经网络 (SNN) 模型。
struggle2025
神经网络人工智能深度学习
一、软件介绍文末提供程序和源码下载CARLsim是一个高效、易用的GPU加速库,用于模拟具有高度生物学细节的大规模脉冲神经网络(SNN)模型。CARLsim允许在通用x86CPU和标准现成GPU上以逼真的突触动力学执行Izhikevich脉冲神经元网络。该模拟器在C/C++中提供了一个类似PyNN的编程接口,允许在突触、神经元和网络级别指定详细信息和参数。二、CARLsim6的新功能包括:CUDA
- nnv开源神经网络验证软件工具
一、软件介绍文末提供程序和源码下载用于神经网络验证的Matlab工具箱,该工具箱实现了可访问性方法,用于分析自主信息物理系统(CPS)领域中带有神经网络控制器的神经网络和控制系统。二、相关工具和软件该工具箱利用神经网络模型转换工具(nnmt)和闭环系统分析、混合系统模型转换和转换工具(HyST)以及CONTINUOUSReachabilityAnalyzer(CORA)三、无需安装即可执行NNV可
- Kitex v0.14.0 版本发布:支持流式泛化调用,优化排错体验
后端
重要变更介绍新特性1.泛化调用:泛化Client支持流式调用,一个Client搞定流式/非流式调用场景泛化Client支持流式泛化调用,适配gRPC/TTHeaderStreaming并支持map/json和protobuf二进制泛化调用。简要代码示例如下:cli,err:=genericclient.NewClient("actualServiceName",g)//Ping-Pong泛化res
- 100W QPS 短链系统怎么设计
Java程序员 拥抱ai
电商架构大数据
看上去业务简单,其实,覆盖的知识点非常多:高并发、高性能分布式IDRedisBloomFilter高并发、低内存损耗的过滤组件知识分库、分表海量数据存储多级缓存的知识HTTP传输知识二进制、十六进制、六十二进制知识总体来说,高并发、高性能系统的核心领域,都覆盖了。所以,分析下来,得到一个结论:是一个超级好的问题。1、短URL系统的背景短网址替代长URL,在互联网网上传播和引用。例如QQ微博的url
- Entering emergency mode. Exit the shell to continue“journalctl‘to view system logs。【比较全的解决办法】
1.进入紧急模式并查看日志输入root密码在紧急模式提示符下,输入root用户的密码以获得访问权限(如果root密码已知)。查看系统日志运行以下命令查看启动日志,定位具体错误原因:journalctl-xb按↑/↓键滚动日志,或使用Ctrl+C退出。关注以下关键错误信息:Failedtomount/sysroot:根文件系统挂载失败。XFS(dm-0)::文件系统错误(如XFS损坏)。dracut
- 聊一下中老年程序员找工作的情况
阿赵3D
行业杂谈中老年程序员找工作
大家好,我是阿赵。 前几天发了个朋友圈,很多朋友惊讶于我这么快就又上班了,感觉阿赵我是不是找工作特别容易。 实际情况并不如想象中简单,在之前短短2周时间内,我面试了十多间公司,也有不少朋友把我的简历内推了一些公司。 首先我要感谢所有帮助过我和鼓励过我的朋友们,没想到阿赵我在朋友们心中的形象还算过得去,在需要帮助的时候,大家都纷纷伸出援手。不过这些内推,基本上都没有得到面试机会,原因各种各
- Unity团结引擎深度适配HarmonyOS 5.0:渲染架构与系统能力整合指南
H老师带你学鸿蒙
游戏引擎HarmonyOS5.0unity华为鸿蒙DevEcoStudio
随着HarmonyOS5.0的发布,华为操作系统在分布式能力和性能优化方面实现了重大突破。Unity团结引擎作为领先的游戏引擎,深度适配HarmonyOS5.0对开发者来说意义重大。本文将深入探讨Unity在HarmonyOS上的渲染架构优化与系统能力整合,并提供实用的代码示例。一、环境配置与项目设置要开始HarmonyOS5.0下的Unity开发,首先完成环境配置:安装UnityHub2022L
- 鸿蒙HarmonyOS实战开发:实现表情聊天场景案例
你我皆是牛马星人
HarmonyOS鸿蒙开发OpenHarmonyharmonyos华为android鸿蒙ui前端
鸿蒙NEXT开发实战往期必看文章:一分钟了解”纯血版!鸿蒙HarmonyOSNext应用开发!“非常详细的”鸿蒙HarmonyOSNext应用开发学习路线!(从零基础入门到精通)HarmonyOSNEXT应用开发案例实践总结合(持续更新......)HarmonyOSNEXT应用开发性能优化实践总结(持续更新......)介绍本示例主要介绍如何在聊天信息中加入表情图片。通过变量控制表情键盘的显示与
- 鸿蒙(HarmonyOS)应用开发实战——自定义安全键盘案例
CTrup
HarmonyOS移动开发鸿蒙开发harmonyos安全音视频移动开发鸿蒙开发组件化
往期知识点整理鸿蒙(HarmonyOS)北向开发知识点记录~被裁员后,踏上了鸿蒙开发求职之路持续更新中……介绍金融类应用在密码输入时,一般会使用自定义安全键盘。本示例介绍如何使用TextInput组件实现自定义安全键盘场景,主要包括TextInput.customKeyboard绑定自定义键盘、自定义键盘布局和状态更新等知识点。效果图预览实现思路1.使用TextInput的customKeyboa
- 高性价比二手服务器CPU你知多少?
专注VB编程开发20年
CPU二手
以前E33220这些都不太好的吧,现在不知有哪种二手服务器CPU核心多,主频高,性价比更高,闲鱼二手上哪些值的买,多少钱根据2025年二手服务器CPU市场现状,结合核心数、主频、价格及兼容性,以下推荐四款高性价比型号(价格参考2025年5-6月闲鱼行情):⚡一、性能怪兽:IntelXeonE5-2696v3(18核36线程)核心参数:18核36线程|基础2.3GHz/睿频3.8GHz|L3
- 遥感影像数据处理-大图滑窗切分为小图
GIS潮流
遥感语义分割
功能需求据所周知,遥感影像的尺寸有大有小,大的达到几万x几万像素,而图像分割算法模型在训练中尺寸适中,比如256x256,512x512,1024x1024等等,如果直接将遥感影像的原图输入模型中进行训练,大概率会提示内存和显存不足,因此针对遥感影像的模型训练,一般都需要将影像裁剪为小图。裁剪后的效果图如下:解决思路基于上面的需求,写了一套裁剪算法流程。主要考虑的是在裁剪过程中,从左往右、从上到下
- Python 数据分析:pandas 的 DataFrame,抽行、抽列、抽行列。df[] / df.loc[] / df.iloc[],位置索引 / 标签索引,切片 / 不切片
好开心啊没烦恼
Python数据分析python数据分析pandas开发语言数据挖掘
目录1预备知识:Series1.1生成1.2抽提(1)单条(2)多条不连(3)多条连1.3取值2正文:DataFrame2.1生成df2.2抽提2.2.1抽列(1)单列df[]df.loc[]df.iloc[](2)多列不连df[]df.loc[]df.iloc[](3)多列连df[]←不存在这种抽提法!df.loc[]df.iloc[]2.2.2抽行(1)单行df[]df.loc[]df.ilo
- ZLG嵌入式笔记 | 工业现场掉电,系统异常如何破解?
ZLG 致远电子
边缘计算ZLG嵌入式开发应用笔记嵌入式硬件
在工业现场,设备常因掉电导致文件系统损坏或数据丢失。本文将介绍如何通过硬件和系统设计优化,解决这一问题,提升设备稳定性。 前言在工业应用现场,不可避免会出现异常掉电或者一些偶发性频繁上下电的情况,这样对系统是有非常大的影响的,特别是写数据过程中发生了掉电,可能会引发下列异常:引起文件系统损坏或者系统异常;数据丢失,带来经济损失。这是非常典型的产品运行过程中有写数据操作,但数据
- AWTK:一键切换皮肤,打造个性化UI
ZLG 致远电子
个人开发
想让你的应用在不同场景下都能完美呈现吗?皮肤切换功能必不可少!本文将介绍AWTK,一款强大的GUI框架,它通过内置资源管理和优化缓存,轻松实现皮肤切换功能。 前言当今的UI应用中,为了满足不同使用场景和用户的个性化需求,许多软件都加入了切换皮肤的功能。例如,当夜晚使用手机时,屏幕亮度可能会让人感到刺眼,此时用户可以将APP切换为夜间模式;而在户外强光环境下,则需要切换到高亮度
- 【C++指南】C++ list容器完全解读(三):list迭代器的实现与优化
倔强的石头_
C++指南c++list开发语言
.博客主页:倔强的石头的CSDN主页Gitee主页:倔强的石头的gitee主页⏩文章专栏:《C++指南》期待您的关注文章目录引言一、普通迭代器:链表的“导航指针”1.1迭代器的本质1.2迭代器与链表的关系二、const迭代器:数据保护的实现2.1为什么需要const迭代器?2.2独立const迭代器的实现三、模板复用:合并普通与const迭代器3.1STL的迭代器优化思想3.2统一迭代器模板实现3
- JavaScript性能优化代码示例
突然暴富的我 || 比较富的我
javascript
JavaScript性能优化实战大纲性能优化的核心目标减少加载时间、提升渲染效率、降低内存占用、优化交互响应代码层面的优化实践避免全局变量污染,使用局部变量和模块化开发减少DOM操作频率,批量处理DOM更新使用事件委托替代大量事件监听器优化循环结构,减少不必要的计算使用WebWorkers处理密集型计算任务内存管理策略及时清除不再使用的对象引用避免内存泄漏,注意闭包使用场景使用弱引用(WeakMa
- 大模型之提示词工程十指令——结合认知科学与高效学习法的AI协作指南
SEVEN-YEARS
学习人工智能
1.费曼学习法:用“教学”倒逼模型理解复杂概念原理:通过模拟教学场景,迫使模型深入理解知识本质。指令示例:“请用‘小学数学老师’的身份,向孩子解释区块链的基本原理。”输出:“区块链就像一个透明的记账本,每个人都可以看到上面的记录。比如你和同学一起买零食,大家轮流在本子上记录谁买了什么,这样没有人能偷偷修改记录。”应用场景:技术概念简化、跨领域知识迁移、科普内容生成。2.帕累托法则:聚焦关键20%的
- 小程序领域H5的性能监控与分析
小程序开发2020
CS小程序apache服务器ai
小程序领域H5的性能监控与分析:让你的"小快灵"跑得更稳更快关键词:小程序H5、性能监控、首屏时间、双线程模型、用户体验优化摘要:当我们在小程序里刷新闻、逛商品详情页时,这些看似"丝滑"的H5页面背后,可能隐藏着白屏卡顿、加载缓慢等"暗礁"。本文将从生活场景出发,用"奶茶店运营"的类比拆解小程序H5性能监控的核心逻辑,带你掌握从指标定义到实战落地的全流程方法,助你成为小程序H5的"性能管家"。背景
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文