手把手教你做单细胞测序数据分析(五)——细胞类型注释

前面的课程中基本已带领大家将单细胞测序预处理部分打通了,这里给大家介绍的是单细胞测序中最让人头疼的细胞类型注释。第一个代码块中没有注释,看不懂的同学去看一下我们的第三讲 单样本分析,测试数据也与那里的相同。

视频教程:
手把手教你做单细胞测序数据分析(五)——细胞类型注释

(B站同步播出,先看一遍视频再跟着代码一起操作,建议每个视频至少看三遍)

准备工作

先进行预处理,作到细胞注释前的步骤
if(T){rm(list = ls())

  if (!require("Seurat"))install.packages("Seurat")
  if (!require("BiocManager", quietly = TRUE))install.packages("BiocManager")
  if (!require("multtest", quietly = TRUE))install.packages("multtest")
  if (!require("dplyr", quietly = TRUE))install.packages("dplyr")
  download.file('https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz','pbmc3k_filtered_gene_bc_matrices.tar.gz')
  library(R.utils)
  gunzip('pbmc3k_filtered_gene_bc_matrices.tar.gz')
  untar('pbmc3k_filtered_gene_bc_matrices.tar')
  pbmc.data <- Read10X('filtered_gene_bc_matrices/hg19/') 
  pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200)
  pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-") 
  pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)   
  pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 10000)      
  pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 2000)
  top10 <- head(VariableFeatures(pbmc), 10) 
  pbmc <- ScaleData(pbmc, features =  rownames(pbmc)) 
  pbmc <- ScaleData(pbmc, vars.to.regress = "percent.mt") 
  pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))
  print(pbmc[["pca"]], dims = 1:5, nfeatures = 5) 
  VizDimLoadings(pbmc, dims = 1:2, reduction = "pca") 
  DimHeatmap(pbmc, dims = 1, cells = 500, balanced = TRUE) 
  DimHeatmap(pbmc, dims = 1:15, cells = 500, balanced = TRUE) 
  pbmc <- JackStraw(pbmc, num.replicate = 100) 
  pbmc <- ScoreJackStraw(pbmc, dims = 1:20) 
  JackStrawPlot(pbmc, dims = 1:15)
  pbmc <- FindNeighbors(pbmc, dims = 1:10)
  pbmc <- FindClusters(pbmc, resolution = 0.5) 
  head(Idents(pbmc), 5) 
  pbmc <- RunUMAP(pbmc, dims = 1:10) 
  pbmc <- RunTSNE(pbmc, dims = 1:10) 
  DimPlot(pbmc, reduction = "umap", label = TRUE)
  pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25) 
  library(dplyr)
  pbmc.markers %>% group_by(cluster) %>% top_n(n = 2, wt = avg_log2FC) 
  }
## Loading required package: Seurat
## Warning: package 'Seurat' was built under R version 4.0.5
## Attaching SeuratObject
## Warning: package 'BiocManager' was built under R version 4.0.5
## Bioconductor version '3.12' is out-of-date; the current release version '3.13'
##   is available with R version '4.1'; see https://bioconductor.org/install
## Warning: package 'BiocGenerics' was built under R version 4.0.5
## 
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
## 
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##     clusterExport, clusterMap, parApply, parCapply, parLapply,
##     parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
## 
##     IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
## 
##     anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##     union, unique, unsplit, which.max, which.min
## Welcome to Bioconductor
## 
##     Vignettes contain introductory material; view with
##     'browseVignettes()'. To cite Bioconductor, see
##     'citation("Biobase")', and for packages 'citation("pkgname")'.
## Warning: package 'dplyr' was built under R version 4.0.5
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:Biobase':
## 
##     combine
## The following objects are masked from 'package:BiocGenerics':
## 
##     combine, intersect, setdiff, union
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Loading required package: R.oo
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
## R.oo v1.24.0 (2020-08-26 16:11:58 UTC) successfully loaded. See ?R.oo for help.
## 
## Attaching package: 'R.oo'
## The following object is masked from 'package:R.methodsS3':
## 
##     throw
## The following objects are masked from 'package:methods':
## 
##     getClasses, getMethods
## The following objects are masked from 'package:base':
## 
##     attach, detach, load, save
## R.utils v2.10.1 (2020-08-26 22:50:31 UTC) successfully loaded. See ?R.utils for help.
## 
## Attaching package: 'R.utils'
## The following object is masked from 'package:utils':
## 
##     timestamp
## The following objects are masked from 'package:base':
## 
##     cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,
##     warnings
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
## Centering and scaling data matrix
## Regressing out percent.mt
## Centering and scaling data matrix
## PC_ 1 
## Positive:  CST3, TYROBP, LST1, AIF1, FTL, FTH1, LYZ, FCN1, S100A9, TYMP 
##     FCER1G, CFD, LGALS1, LGALS2, SERPINA1, S100A8, CTSS, IFITM3, SPI1, CFP 
##     PSAP, IFI30, COTL1, SAT1, S100A11, NPC2, GRN, LGALS3, GSTP1, PYCARD 
## Negative:  MALAT1, LTB, IL32, IL7R, CD2, B2M, ACAP1, CTSW, STK17A, CD27 
##     CD247, CCL5, GIMAP5, GZMA, AQP3, CST7, TRAF3IP3, SELL, GZMK, HOPX 
##     MAL, MYC, ITM2A, ETS1, LYAR, GIMAP7, KLRG1, NKG7, ZAP70, BEX2 
## PC_ 2 
## Positive:  CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1, HLA-DRA, LINC00926, CD79B, HLA-DRB1, CD74 
##     HLA-DMA, HLA-DPB1, HLA-DQA2, CD37, HLA-DRB5, HLA-DMB, HLA-DPA1, FCRLA, HVCN1, LTB 
##     BLNK, P2RX5, IGLL5, IRF8, SWAP70, ARHGAP24, FCGR2B, SMIM14, PPP1R14A, C16orf74 
## Negative:  NKG7, PRF1, CST7, GZMA, GZMB, FGFBP2, CTSW, GNLY, B2M, SPON2 
##     CCL4, GZMH, FCGR3A, CCL5, CD247, XCL2, CLIC3, AKR1C3, SRGN, HOPX 
##     TTC38, CTSC, APMAP, S100A4, IGFBP7, ANXA1, ID2, IL32, XCL1, RHOC 
## PC_ 3 
## Positive:  HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPA1, HLA-DPB1, CD74, MS4A1, HLA-DRB1, HLA-DRA 
##     HLA-DRB5, HLA-DQA2, TCL1A, LINC00926, HLA-DMB, HLA-DMA, CD37, HVCN1, FCRLA, IRF8 
##     PLAC8, BLNK, MALAT1, SMIM14, PLD4, IGLL5, SWAP70, P2RX5, LAT2, FCGR3A 
## Negative:  PPBP, PF4, SDPR, SPARC, GNG11, NRGN, GP9, RGS18, TUBB1, CLU 
##     HIST1H2AC, AP001189.4, ITGA2B, CD9, TMEM40, PTCRA, CA2, ACRBP, MMD, TREML1 
##     NGFRAP1, F13A1, SEPT5, RUFY1, TSC22D1, CMTM5, MPP1, MYL9, RP11-367G6.3, GP1BA 
## PC_ 4 
## Positive:  HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1, CD74, HLA-DPB1, HIST1H2AC, HLA-DPA1, HLA-DRB1 
##     TCL1A, PF4, HLA-DQA2, SDPR, HLA-DRA, LINC00926, PPBP, GNG11, HLA-DRB5, SPARC 
##     GP9, PTCRA, CA2, AP001189.4, CD9, NRGN, RGS18, GZMB, CLU, TUBB1 
## Negative:  VIM, IL7R, S100A6, S100A8, IL32, S100A4, GIMAP7, S100A10, S100A9, MAL 
##     AQP3, CD14, CD2, LGALS2, FYB, GIMAP4, ANXA1, RBP7, CD27, FCN1 
##     LYZ, S100A12, MS4A6A, GIMAP5, S100A11, FOLR3, TRABD2A, AIF1, IL8, TMSB4X 
## PC_ 5 
## Positive:  GZMB, FGFBP2, S100A8, NKG7, GNLY, CCL4, PRF1, CST7, SPON2, GZMA 
##     GZMH, LGALS2, S100A9, CCL3, XCL2, CD14, CLIC3, CTSW, MS4A6A, GSTP1 
##     S100A12, RBP7, IGFBP7, FOLR3, AKR1C3, TYROBP, CCL5, TTC38, XCL1, APMAP 
## Negative:  LTB, IL7R, CKB, MS4A7, RP11-290F20.3, AQP3, SIGLEC10, VIM, CYTIP, HMOX1 
##     LILRB2, PTGES3, HN1, CD2, FAM110A, CD27, ANXA5, CTD-2006K23.1, MAL, VMO1 
##     CORO1B, TUBA1B, LILRA3, GDI2, TRADD, ATP1A1, IL32, ABRACL, CCDC109B, PPA1
## PC_ 1 
## Positive:  CST3, TYROBP, LST1, AIF1, FTL 
## Negative:  MALAT1, LTB, IL32, IL7R, CD2 
## PC_ 2 
## Positive:  CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1 
## Negative:  NKG7, PRF1, CST7, GZMA, GZMB 
## PC_ 3 
## Positive:  HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPA1 
## Negative:  PPBP, PF4, SDPR, SPARC, GNG11 
## PC_ 4 
## Positive:  HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1 
## Negative:  VIM, IL7R, S100A6, S100A8, IL32 
## PC_ 5 
## Positive:  GZMB, FGFBP2, S100A8, NKG7, GNLY 
## Negative:  LTB, IL7R, CKB, MS4A7, RP11-290F20.3

手把手教你做单细胞测序数据分析(五)——细胞类型注释_第1张图片

## Computing nearest neighbor graph
## Computing SNN
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 2638
## Number of edges: 95893
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8735
## Number of communities: 9
## Elapsed time: 0 seconds
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
## 09:15:44 UMAP embedding parameters a = 0.9922 b = 1.112
## 09:15:44 Read 2638 rows and found 10 numeric columns
## 09:15:44 Using Annoy for neighbor search, n_neighbors = 30
## 09:15:44 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 09:15:44 Writing NN index file to temp file C:\Users\53513\AppData\Local\Temp\Rtmpo9Xcsm\file56685416913
## 09:15:44 Searching Annoy index using 1 thread, search_k = 3000
## 09:15:45 Annoy recall = 100%
## 09:15:45 Commencing smooth kNN distance calibration using 1 thread
## 09:15:46 Initializing from normalized Laplacian + noise
## 09:15:46 Commencing optimization for 500 epochs, with 106338 positive edges
## 09:15:52 Optimization finished
## Calculating cluster 0
## Calculating cluster 1
## Calculating cluster 2
## Calculating cluster 3
## Calculating cluster 4
## Calculating cluster 5
## Calculating cluster 6
## Calculating cluster 7
## Calculating cluster 8

手把手教你做单细胞测序数据分析(五)——细胞类型注释_第2张图片

## Registered S3 method overwritten by 'cli':
##   method     from         
##   print.boxx spatstat.geom
## # A tibble: 18 x 7
## # Groups:   cluster [9]
##        p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene    
##                            
##  1 1.88e-117       1.08 0.913 0.588 2.57e-113 0       LDHB    
##  2 5.01e- 85       1.34 0.437 0.108 6.88e- 81 0       CCR7    
##  3 0               5.57 0.996 0.215 0         1       S100A9  
##  4 0               5.48 0.975 0.121 0         1       S100A8  
##  5 1.93e- 80       1.27 0.981 0.65  2.65e- 76 2       LTB     
##  6 2.91e- 58       1.27 0.667 0.251 3.98e- 54 2       CD2     
##  7 0               4.31 0.939 0.042 0         3       CD79A   
##  8 1.06e-269       3.59 0.623 0.022 1.45e-265 3       TCL1A   
##  9 3.60e-221       3.21 0.984 0.226 4.93e-217 4       CCL5    
## 10 4.27e-176       3.01 0.573 0.05  5.85e-172 4       GZMK    
## 11 3.51e-184       3.31 0.975 0.134 4.82e-180 5       FCGR3A  
## 12 2.03e-125       3.09 1     0.315 2.78e-121 5       LST1    
## 13 3.17e-267       4.83 0.961 0.068 4.35e-263 6       GZMB    
## 14 1.04e-189       5.28 0.961 0.132 1.43e-185 6       GNLY    
## 15 1.48e-220       3.87 0.812 0.011 2.03e-216 7       FCER1A  
## 16 1.67e- 21       2.87 1     0.513 2.28e- 17 7       HLA-DPB1
## 17 7.73e-200       7.24 1     0.01  1.06e-195 8       PF4     
## 18 3.68e-110       8.58 1     0.024 5.05e-106 8       PPBP

方法一:查数据库

library(dplyr)
top10 <- pbmc.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_log2FC)
DoHeatmap(pbmc, features = top10$gene) + NoLegend()#展示前10个标记基因的热图
## Warning in DoHeatmap(pbmc, features = top10$gene): The following features were
## omitted as they were not found in the scale.data slot for the RNA assay: CD8A,
## VPREB3, CD40LG, PIK3IP1, PRKCQ-AS1, NOSIP, LEF1, CD3E, CD3D, CCR7, LDHB, RPS3A

VlnPlot(pbmc, features = top10$gene[1:20],pt.size=0)

手把手教你做单细胞测序数据分析(五)——细胞类型注释_第3张图片

DimPlot(pbmc,label = T)

手把手教你做单细胞测序数据分析(五)——细胞类型注释_第4张图片

#通过标记基因及文献,可以人工确定各分类群的细胞类型,则可以如下手动添加细胞群名称
bfreaname.pbmc <- pbmc
new.cluster.ids <- c("Naive CD4 T", "Memory CD4 T", "CD14+ Mono", "B", "CD8 T", "FCGR3A+ Mono", 
                     "NK", "DC", "Platelet")
#帮助单细胞测序进行注释的数据库:
#http://mp.weixin.qq.com/s?__biz=MzI5MTcwNjA4NQ==&mid=2247502903&idx=2&sn=fd21e6e111f57a4a2b6c987e391068fd&chksm=ec0e09bddb7980abf038f62d03d3beea6249753c8fba69b69f399de9854fc208ca863ca5bc23&mpshare=1&scene=24&srcid=1110SJhxDL8hmNB5BThrgOS9&sharer_sharetime=1604979334616&sharer_shareid=853c5fb0f1636baa0a65973e8b5db684#rd
#cellmarker: http://biocc.hrbmu.edu.cn/CellMarker/index.jsp
names(new.cluster.ids) <- levels(pbmc)
pbmc <- RenameIdents(pbmc, new.cluster.ids)
DimPlot(pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()

手把手教你做单细胞测序数据分析(五)——细胞类型注释_第5张图片

方法二:通过singleR

这一方法很鸡肋,主要是由于很难找到合适的参考数据,但是对于免疫细胞的注释还是有可观效果的

if(!require(SingleR))BiocManager::install(SingleR)
## Loading required package: SingleR
## Loading required package: SummarizedExperiment
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
## Warning: package 'matrixStats' was built under R version 4.0.5
## 
## Attaching package: 'matrixStats'
## The following object is masked from 'package:dplyr':
## 
##     count
## The following objects are masked from 'package:Biobase':
## 
##     anyMissing, rowMedians
## 
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
## 
##     colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##     colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
##     colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##     colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
##     colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##     colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##     colWeightedMeans, colWeightedMedians, colWeightedSds,
##     colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##     rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
##     rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##     rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##     rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
##     rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##     rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
##     rowWeightedSds, rowWeightedVars
## The following object is masked from 'package:Biobase':
## 
##     rowMedians
## Loading required package: GenomicRanges
## Loading required package: stats4
## Loading required package: S4Vectors
## 
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:dplyr':
## 
##     first, rename
## The following object is masked from 'package:base':
## 
##     expand.grid
## Loading required package: IRanges
## 
## Attaching package: 'IRanges'
## The following object is masked from 'package:R.oo':
## 
##     trim
## The following objects are masked from 'package:dplyr':
## 
##     collapse, desc, slice
## The following object is masked from 'package:grDevices':
## 
##     windows
## Loading required package: GenomeInfoDb
## Warning: package 'GenomeInfoDb' was built under R version 4.0.5
## 
## Attaching package: 'SummarizedExperiment'
## The following object is masked from 'package:SeuratObject':
## 
##     Assays
## The following object is masked from 'package:Seurat':
## 
##     Assays
# remove.packages('matrixStats')#移除后可能需要重新打开
if(!require(matrixStats))BiocManager::install('matrixStats')
# remove.packages(c('dplyr','ellipsis'))
# install.packages(c('dplyr','ellipsis'))
# remove.packages(c('vctrs'))
# install.packages(c('vctrs'))
if(!require(celldex))BiocManager::install('celldex')#有一些版本冲突,需要重新安装一些包。
## Loading required package: celldex
## 
## Attaching package: 'celldex'
## The following objects are masked from 'package:SingleR':
## 
##     BlueprintEncodeData, DatabaseImmuneCellExpressionData,
##     HumanPrimaryCellAtlasData, ImmGenData, MonacoImmuneData,
##     MouseRNAseqData, NovershternHematopoieticData
###内置数据集:
# cg=BlueprintEncodeData()
# cg=DatabaseImmuneCellExpressionData()
# cg=NovershternHematopoieticData()
# cg=MonacoImmuneData()
# cg=ImmGenData()
# cg=MouseRNAseqData()
# cg=HumanPrimaryCellAtlasData()
cg<-ImmGenData()#选取我们要使用的免疫细胞参考数据集
## snapshotDate(): 2020-10-27
## see ?celldex and browseVignettes('celldex') for documentation
## Could not check id: EH3494 for updates.
##   Using previously cached version.
## loading from cache
## Could not check id: EH3494 for updates.
##   Using previously cached version.
## see ?celldex and browseVignettes('celldex') for documentation
## Could not check id: EH3495 for updates.
##   Using previously cached version.
## loading from cache
## Could not check id: EH3495 for updates.
##   Using previously cached version.
assay_for_SingleR <- GetAssayData(bfreaname.pbmc, slot="data")#取出样本中的表达序列
predictions <- SingleR(test=assay_for_SingleR, 
                       ref=cg, labels=cg$label.main)
#以kidney中提取的阵列为输入数据,以小鼠的阵列作为参考,predict细胞类型

table(predictions$labels)#看看都注释到了哪些细胞
## 
##           B cells Endothelial cells       Eosinophils        Mast cells 
##              2555                19                18                25 
##          NK cells     Stromal cells 
##                11                10
cellType=data.frame([email protected]$seurat_clusters,
                    predict=predictions$labels)#得到seurat中编号与预测标签之间的关系
sort(table(cellType[,1]))
## 
##   8   7   6   5   4   3   2   1   0 
##  14  32 154 162 316 342 429 480 709
table(cellType[,1:2])#访问celltyple的2~3列
##       predict
## seurat B cells Endothelial cells Eosinophils Mast cells NK cells Stromal cells
##      0     696                 5           4          0        3             1
##      1     458                 2           6         12        2             0
##      2     415                 4           6          0        2             2
##      3     342                 0           0          0        0             0
##      4     311                 4           0          0        1             0
##      5     137                 3           1         13        1             7
##      6     151                 1           1          0        1             0
##      7      31                 0           0          0        1             0
##      8      14                 0           0          0        0             0
#可以看出 singleR如果没有合适的数据集,得到的结果有多拉跨了吧
#这里就没必要再往下重命名了

你有合适的参考数据集时可以用方法三、方法四进行注释

方法三:自定义singleR注释

#我们走个极端,拿它自己作为自己的参考数据集,看看注释的准不准
##########利用singleR构建自己的数据作为参考数据集########
library(SingleR)
library(Seurat)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.5
if(!require(textshape))install.packages('textshape')
## Loading required package: textshape
## Warning: package 'textshape' was built under R version 4.0.5
## 
## Attaching package: 'textshape'
## The following object is masked from 'package:dplyr':
## 
##     combine
## The following object is masked from 'package:Biobase':
## 
##     combine
## The following object is masked from 'package:BiocGenerics':
## 
##     combine
if(!require(scater))BiocManager::install('scater')
## Loading required package: scater
## Warning: package 'scater' was built under R version 4.0.4
## Loading required package: SingleCellExperiment
if(!require(SingleCellExperiment))BiocManager::install('SingleCellExperiment')
library(dplyr)

# 读入scRNA数据 -------
myref <- pbmc##这里为了检测,我们将参考数据集与目标数据集用同一个数据进行测试
myref$celltype <- Idents(myref)
table(Idents(myref))
## 
##  Naive CD4 T Memory CD4 T   CD14+ Mono            B        CD8 T FCGR3A+ Mono 
##          709          480          429          342          316          162 
##           NK           DC     Platelet 
##          154           32           14
# 读入参考数据集 -------
Refassay <- log1p(AverageExpression(myref, verbose = FALSE)$RNA)#求
#Ref <- textshape::column_to_rownames(Ref, loc = 1)#另一种得到参考矩阵的办法
head(Refassay)#看看表达矩阵长啥样
##               Naive CD4 T Memory CD4 T  CD14+ Mono          B      CD8 T
## AL627309.1    0.006006857   0.04740195 0.006651185 0.00000000 0.01746659
## AP006222.2    0.000000000   0.01082590 0.009196592 0.00000000 0.01016628
## RP11-206L10.2 0.007300235   0.00000000 0.000000000 0.02055829 0.00000000
## RP11-206L10.9 0.000000000   0.01044641 0.000000000 0.00000000 0.00000000
## LINC00115     0.014803993   0.03685000 0.033640559 0.03836728 0.01657028
## NOC2L         0.410974333   0.24101294 0.312227749 0.46371195 0.39676059
##               FCGR3A+ Mono         NK        DC Platelet
## AL627309.1      0.00000000 0.00000000 0.0000000        0
## AP006222.2      0.00000000 0.00000000 0.0000000        0
## RP11-206L10.2   0.00000000 0.00000000 0.0812375        0
## RP11-206L10.9   0.01192865 0.00000000 0.0000000        0
## LINC00115       0.01458683 0.05726061 0.0000000        0
## NOC2L           0.40564359 0.53378022 0.2841343        0
ref_sce <- SingleCellExperiment::SingleCellExperiment(assays=list(counts=Refassay))
#参考数据集需要构建成一个SingleCellExperiment对象
ref_sce=scater::logNormCounts(ref_sce)

logcounts(ref_sce)[1:4,1:4]
##               Naive CD4 T Memory CD4 T  CD14+ Mono          B
## AL627309.1    0.009250892   0.06711500 0.009538416 0.00000000
## AP006222.2    0.000000000   0.01560549 0.013172144 0.00000000
## RP11-206L10.2 0.011235027   0.00000000 0.000000000 0.02967623
## RP11-206L10.9 0.000000000   0.01506130 0.000000000 0.00000000
colData(ref_sce)$Type=colnames(Refassay)
ref_sce#构建完成
## class: SingleCellExperiment 
## dim: 13714 9 
## metadata(0):
## assays(2): counts logcounts
## rownames(13714): AL627309.1 AP006222.2 ... PNRC2.1 SRSF10.1
## rowData names(0):
## colnames(9): Naive CD4 T Memory CD4 T ... DC Platelet
## colData names(2): sizeFactor Type
## reducedDimNames(0):
## altExpNames(0):
###提取自己的单细胞矩阵##########
testdata <- GetAssayData(bfreaname.pbmc, slot="data")
pred <- SingleR(test=testdata, ref=ref_sce, 
                labels=ref_sce$Type,
                #clusters = [email protected]
)
table(pred$labels)
## 
##            B   CD14+ Mono        CD8 T           DC FCGR3A+ Mono Memory CD4 T 
##          344          537          308           31          179          464 
##  Naive CD4 T           NK     Platelet 
##          601          160           14
head(pred) 
## DataFrame with 6 rows and 5 columns
##                                          scores first.labels      tuning.scores
##                                                  
## AAACATACAACCAC-1 0.336675:0.424807:0.430908:...        CD8 T 0.321456:0.2879031
## AAACATTGAGCTAC-1 0.494458:0.381603:0.391545:...            B 0.494458:0.4012752
## AAACATTGATCAGC-1 0.373678:0.519949:0.489834:...   CD14+ Mono 0.411459:0.3466608
## AAACCGTGCTTCCG-1 0.341852:0.362193:0.353068:... Memory CD4 T 0.422782:0.3899934
## AAACCGTGTATGCG-1 0.233921:0.279848:0.329152:...           NK 0.384988:0.0678734
## AAACGCACTGGTAC-1 0.391590:0.458438:0.426201:...   CD14+ Mono 0.335794:0.2679515
##                        labels pruned.labels
##                      
## AAACATACAACCAC-1        CD8 T         CD8 T
## AAACATTGAGCTAC-1            B             B
## AAACATTGATCAGC-1   CD14+ Mono    CD14+ Mono
## AAACCGTGCTTCCG-1 FCGR3A+ Mono  FCGR3A+ Mono
## AAACCGTGTATGCG-1           NK            NK
## AAACGCACTGGTAC-1   CD14+ Mono    CD14+ Mono
as.data.frame(table(pred$labels))
##           Var1 Freq
## 1            B  344
## 2   CD14+ Mono  537
## 3        CD8 T  308
## 4           DC   31
## 5 FCGR3A+ Mono  179
## 6 Memory CD4 T  464
## 7  Naive CD4 T  601
## 8           NK  160
## 9     Platelet   14
#pred@listData[["scores"]] #预测评分,想看看结构的可以自己看看
#同上,我们找一下seurat中类群与注释结果直接的关系
cellType=data.frame([email protected]$seurat_clusters,
                    predict=pred$labels)#得到seurat中编号与预测标签之间的关系
sort(table(cellType[,1]))
## 
##   8   7   6   5   4   3   2   1   0 
##  14  32 154 162 316 342 429 480 709
table(cellType[,1:2])#访问celltyple的2~3列
##       predict
## seurat   B CD14+ Mono CD8 T  DC FCGR3A+ Mono Memory CD4 T Naive CD4 T  NK
##      0   2        159    13   0            0            0         535   0
##      1   0          0     0   1           17          462           0   0
##      2   0        355    10   0            0            0          64   0
##      3 341          1     0   0            0            0           0   0
##      4   1         22   282   0            0            0           2   9
##      5   0          0     0   0          162            0           0   0
##      6   0          0     3   0            0            0           0 151
##      7   0          0     0  30            0            2           0   0
##      8   0          0     0   0            0            0           0   0
##       predict
## seurat Platelet
##      0        0
##      1        0
##      2        0
##      3        0
##      4        0
##      5        0
##      6        0
##      7        0
##      8       14
lalala <- as.data.frame(table(cellType[,1:2]))
finalmap <- lalala %>% group_by(seurat) %>% top_n(n = 1, wt = Freq)#找出每种seurat_cluster注释比例最高的对应类型
finalmap <-finalmap[order(finalmap$seurat),]$predict#找到seurat中0:8的对应预测细胞类型
print(finalmap)
## [1] Naive CD4 T  Memory CD4 T CD14+ Mono   B            CD8 T       
## [6] FCGR3A+ Mono NK           DC           Platelet    
## 9 Levels: B CD14+ Mono CD8 T DC FCGR3A+ Mono Memory CD4 T Naive CD4 T ... Platelet
testname <- bfreaname.pbmc
new.cluster.ids <- as.character(finalmap)
names(new.cluster.ids) <- levels(testname)
testname <- RenameIdents(testname, new.cluster.ids)

p1 <- DimPlot(pbmc,label = T)
p2 <- DimPlot(testname,label = T)#比较一下测试数据与参考数据集之间有没有偏差
p1|p2#完美,无差别注释,当然了,我们这个参考数据用的比较极端

手把手教你做单细胞测序数据分析(五)——细胞类型注释_第6张图片

方法四、Seurat内置的投影

######利用seurat内置的原先用于细胞整合的功能,将参考数据与待注释数据进行映射处理
library(Seurat)
pancreas.query <- bfreaname.pbmc#待注释数据
pancreas.anchors <- FindTransferAnchors(reference = pbmc, query = pancreas.query,
                                        dims = 1:30)
## Performing PCA on the provided reference using 2000 features as input.
## Projecting cell embeddings
## Finding neighborhoods
## Finding anchors
##  Found 7206 anchors
## Filtering anchors
##  Retained 5268 anchors
pbmc$celltype <- Idents(pbmc)
predictions <- TransferData(anchorset = pancreas.anchors, refdata = pbmc$celltype,
                            dims = 1:30)
## Finding integration vectors
## Finding integration vector weights
## Predicting cell labels
pancreas.query <- AddMetaData(pancreas.query, metadata = predictions)
#把注释加回原来的数据集
pancreas.query$prediction.match <- pancreas.query$predicted.id
table(pancreas.query$prediction.match)
## 
##            B   CD14+ Mono        CD8 T           DC FCGR3A+ Mono Memory CD4 T 
##          340          431          294           32          158          485 
##  Naive CD4 T           NK     Platelet 
##          732          153           13
Idents(pancreas.query)<- 'prediction.match'

p1 <- DimPlot(pbmc,label = T)
p2 <- DimPlot(pancreas.query,label = T)#比较一下测试数据与参考数据集之间有没有偏差
p1|p2#完美,无差别注释,当然了,我们这个参考数据用的比较极端

手把手教你做单细胞测序数据分析(五)——细胞类型注释_第7张图片

版本问题

#### 最近发现代码运行的最大障碍是各个packages的版本冲突问题,这里列出本次分析环境中的所有信息,报错时可以参考
sessionInfo()
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19042)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Chinese (Simplified)_China.936 
## [2] LC_CTYPE=Chinese (Simplified)_China.936   
## [3] LC_MONETARY=Chinese (Simplified)_China.936
## [4] LC_NUMERIC=C                              
## [5] LC_TIME=Chinese (Simplified)_China.936    
## 
## attached base packages:
## [1] stats4    parallel  stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] scater_1.18.6               SingleCellExperiment_1.12.0
##  [3] textshape_1.7.3             ggplot2_3.3.5              
##  [5] celldex_1.0.0               SingleR_1.4.1              
##  [7] SummarizedExperiment_1.20.0 GenomicRanges_1.42.0       
##  [9] GenomeInfoDb_1.26.7         IRanges_2.24.1             
## [11] S4Vectors_0.28.1            MatrixGenerics_1.2.1       
## [13] matrixStats_0.60.1          R.utils_2.10.1             
## [15] R.oo_1.24.0                 R.methodsS3_1.8.1          
## [17] dplyr_1.0.7                 multtest_2.46.0            
## [19] Biobase_2.50.0              BiocGenerics_0.36.1        
## [21] BiocManager_1.30.16         SeuratObject_4.0.2         
## [23] Seurat_4.0.2               
## 
## loaded via a namespace (and not attached):
##   [1] utf8_1.2.2                    reticulate_1.20              
##   [3] tidyselect_1.1.1              RSQLite_2.2.8                
##   [5] AnnotationDbi_1.52.0          htmlwidgets_1.5.4            
##   [7] grid_4.0.3                    BiocParallel_1.24.1          
##   [9] Rtsne_0.15                    munsell_0.5.0                
##  [11] codetools_0.2-16              ica_1.0-2                    
##  [13] future_1.22.1                 miniUI_0.1.1.1               
##  [15] withr_2.4.2                   colorspace_2.0-2             
##  [17] highr_0.9                     knitr_1.34                   
##  [19] rstudioapi_0.13               ROCR_1.0-11                  
##  [21] tensor_1.5                    listenv_0.8.0                
##  [23] labeling_0.4.2                GenomeInfoDbData_1.2.4       
##  [25] polyclip_1.10-0               bit64_4.0.5                  
##  [27] farver_2.1.0                  parallelly_1.28.1            
##  [29] vctrs_0.3.8                   generics_0.1.0               
##  [31] xfun_0.25                     BiocFileCache_1.14.0         
##  [33] R6_2.5.1                      ggbeeswarm_0.6.0             
##  [35] rsvd_1.0.5                    bitops_1.0-7                 
##  [37] spatstat.utils_2.2-0          cachem_1.0.6                 
##  [39] DelayedArray_0.16.3           assertthat_0.2.1             
##  [41] promises_1.2.0.1              scales_1.1.1                 
##  [43] beeswarm_0.4.0                gtable_0.3.0                 
##  [45] beachmat_2.6.4                globals_0.14.0               
##  [47] goftest_1.2-2                 rlang_0.4.11                 
##  [49] splines_4.0.3                 lazyeval_0.2.2               
##  [51] spatstat.geom_2.2-2           yaml_2.2.1                   
##  [53] reshape2_1.4.4                abind_1.4-5                  
##  [55] httpuv_1.6.2                  tools_4.0.3                  
##  [57] ellipsis_0.3.2                spatstat.core_2.3-0          
##  [59] jquerylib_0.1.4               RColorBrewer_1.1-2           
##  [61] ggridges_0.5.3                Rcpp_1.0.7                   
##  [63] plyr_1.8.6                    sparseMatrixStats_1.2.1      
##  [65] zlibbioc_1.36.0               purrr_0.3.4                  
##  [67] RCurl_1.98-1.4                rpart_4.1-15                 
##  [69] deldir_0.2-10                 viridis_0.6.1                
##  [71] pbapply_1.4-3                 cowplot_1.1.1                
##  [73] zoo_1.8-9                     ggrepel_0.9.1                
##  [75] cluster_2.1.0                 magrittr_2.0.1               
##  [77] data.table_1.14.0             RSpectra_0.16-0              
##  [79] scattermore_0.7               lmtest_0.9-38                
##  [81] RANN_2.6.1                    fitdistrplus_1.1-5           
##  [83] patchwork_1.1.1               mime_0.11                    
##  [85] evaluate_0.14                 xtable_1.8-4                 
##  [87] gridExtra_2.3                 compiler_4.0.3               
##  [89] tibble_3.1.4                  KernSmooth_2.23-17           
##  [91] crayon_1.4.1                  htmltools_0.5.2              
##  [93] mgcv_1.8-33                   later_1.3.0                  
##  [95] tidyr_1.1.3                   DBI_1.1.1                    
##  [97] ExperimentHub_1.16.1          dbplyr_2.1.1                 
##  [99] MASS_7.3-53                   rappdirs_0.3.3               
## [101] Matrix_1.3-4                  cli_3.0.1                    
## [103] igraph_1.2.6                  pkgconfig_2.0.3              
## [105] scuttle_1.0.4                 plotly_4.9.4.1               
## [107] spatstat.sparse_2.0-0         vipor_0.4.5                  
## [109] bslib_0.3.0                   XVector_0.30.0               
## [111] stringr_1.4.0                 digest_0.6.27                
## [113] sctransform_0.3.2             RcppAnnoy_0.0.19             
## [115] spatstat.data_2.1-0           rmarkdown_2.10               
## [117] leiden_0.3.9                  uwot_0.1.10                  
## [119] DelayedMatrixStats_1.12.3     curl_4.3.2                   
## [121] shiny_1.6.0                   lifecycle_1.0.0              
## [123] nlme_3.1-149                  jsonlite_1.7.2               
## [125] BiocNeighbors_1.8.2           viridisLite_0.4.0            
## [127] limma_3.46.0                  fansi_0.5.0                  
## [129] pillar_1.6.2                  lattice_0.20-41              
## [131] fastmap_1.1.0                 httr_1.4.2                   
## [133] survival_3.2-7                interactiveDisplayBase_1.28.0
## [135] glue_1.4.2                    png_0.1-7                    
## [137] BiocVersion_3.12.0            bit_4.0.4                    
## [139] stringi_1.7.4                 sass_0.4.0                   
## [141] blob_1.2.2                    BiocSingular_1.6.0           
## [143] AnnotationHub_2.22.1          memoise_2.0.0                
## [145] irlba_2.3.3                   future.apply_1.8.1

可以看出,各种注释方法都是比较科学的,但最大的挑战来源于参考数据集与待注释数据集间的适用度。
OK 吃席!

本系列其他课程

手把手教你做单细胞测序数据分析(一)——绪论

手把手教你做单细胞测序数据分析(二)——各类输入文件读取

手把手教你做单细胞测序数据分析(三)——单样本分析

手把手教你做单细胞测序数据分析(四)——多样本整合

手把手教你做单细胞测序数据分析(五)——细胞类型注释

手把手教你做单细胞测序数据分析(六)——组间差异分析及可视化

手把手教你做单细胞测序数据分析(七)——基因集富集分析

欢迎关注同名公众号~
手把手教你做单细胞测序数据分析(五)——细胞类型注释_第8张图片

你可能感兴趣的:(单细胞测序,数据分析,数据挖掘)