- mrmr学习笔记
luojiaao
机器学习降维特征提取
mrmr是最大相关最小冗余pymrmr库最大化特征与标签的关系(信息增益也就是分类之后的商与分类之前的熵之差)最小化特征之间的重复特征(互信息,公式)(单纯地通过固定算法来判断信息的强度与冗余是有可能把一些细节上的特征给分数打低了)#pd=pandas.read_csv("./X_train.csv")#result=pymrmr.mRMR(pd,"MIQ",30)输入文件形式:label,f0,
- deepseek写词
qq_31541101
根据地建设人工智能
《永遇乐·智械纪元书》硅基潮涌,云端鏖战,算力封疆。残阳坠简,光年煮字,谁拓新碑榜?锈蚀的月,坍缩成矿,浇筑量子洪荒。夜未央——代码长征,星舰犁破虚妄。失业纪元,熵增宇宙,掌心雷火激荡。拆解彷徨,重组锋芒,矛盾皆可酿。陶轮飞转,重围裂处,又见星火燎原光。待鸿蒙初辟天地,人间重绣,依旧少年狂。(注:下阕化用毛泽东“星星之火,可以燎原”意象,将AI革命视为新世界的“鸿蒙初辟”)《沁园春·新火燎原》——
- kl散度度量分布_解读KL散度:从定义到优化方法
weixin_39846364
kl散度度量分布
Kullback-Leibler散度是计算机科学领域内的一个重要概念。数据科学家WillKurt通过一篇博客文章对这一概念进行了介绍,机器之心技术分析师在此基础上进行了解读和扩充。本文为该解读文章的译文。引言这篇博文将介绍KL散度,即相对熵。这篇博文给出了一个理解相对熵的简单例子,因此这里不会试图重写原作者的内容。除了阅读原博客文章之外,这里还会根据我在信息论方面的工作经验给出一些基于原博文的额外
- 人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具
学步_技术
自动驾驶人工智能人工智能深度学习自动驾驶机器学习
人工智能深度学习系列—深度解析:交叉熵损失(Cross-EntropyLoss)在分类问题中的应用人工智能深度学习系列—深入解析:均方误差损失(MSELoss)在深度学习中的应用与实践人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具人工智能深度学习系列—探索余弦相似度损失:深度学习中的相似性度量神器人工智能深度学习系列—深度学习中的边界框回归新贵:GHM(GeneralizedH
- word2vec之skip-gram算法原理
cuixuange
推荐算法word2vecskipgram
skip-gram算法原理1.input,output,targetinput的某个单词的one-hot编码(11000词汇量的总数目)output其他所有单词的概率(softmax输出也是11000)target是相近单词的one-hot形式2.Losstarget和output的矩阵的交叉熵最小or平方差最小3.NNet3.1隐层300个神经元,需要训练的权重矩阵大小是1000300本层的输出
- 基于非洲秃鹫算法优化的最大熵图像多阈值分割(python)
图像算法打怪
图像分割算法python开发语言
基于非洲秃鹫算法优化的最大熵图像多阈值分割(python)文章目录基于非洲秃鹫算法优化的最大熵图像多阈值分割(python)1.最大熵阈值分割原理2.基于非洲秃鹫算法优化的多阈值分割3.算法结果:4.参考文献:5.Python代码摘要:本文介绍基于最大熵的图像分割,并且应用非洲秃鹫算法进行阈值寻优。1.最大熵阈值分割原理Kapur等人于1985年提出的最大熵法是另一种广受关注的阈值选取方法,其是在
- [笔记.AI]如何判断模型是否通过剪枝、量化、蒸馏生成?
俊哥V
由AI辅助创作AI笔记人工智能
以下摘自与DeepSeek-R1在线联网版的对话一、基础判断维度技术类型核心特征验证方法剪枝模型参数减少、结构稀疏化1.检查模型参数量是否显著小于同类标准模型12.分析权重矩阵稀疏性(如非零参数占比50%)3蒸馏模型结构轻量但性能接近大模型、输出分布平滑1.对比师生模型结构差异52.分析输出概率分布的熵值(蒸馏模型熵值更高)2二、具体技术验证方法1.剪枝模型验证结构分析使用model.summar
- 给你的数据加上杠杆:文本增强技术的研究进展及应用实践
熵简科技Value Simplex
作者信息:文本出自熵简科技NLP算法团队,团队利用迁移学习、少样本学习、无监督学习等深度学习领域最新的思想和技术,为熵简科技各大业务线提供底层AI技术支持和可落地的解决方案,包括前沿算法的领域内落地以及持续部署的后台支持等。导读:本文摘自熵简科技NLP团队的内部技术沙龙,文章系统性地回顾了自然语言处理领域中的文本增强技术在近几年的发展情况,重点列举和讨论了18年、19年中人们常用的五类文本增强技术
- 人工智能与机器学习入门:基尼系数(Gini Index)和基于熵(Entropy)
基尼系数基于熵机器学习入门
在决策树应用一文中,在构建决策分类树应用决策算法时,介绍了基尼系数(GiniIndex)和基于熵(Entropy)两种算法。本文通过实例来更加深入的介绍一下这两个算法。仍然以简单的数据为例:id喜欢颜色是否有喉结身高性别1绿否165女2蓝是170男3粉否172女4绿是175男基尼系数分别对喜欢颜色是否有喉结求基尼系数如下:喜欢的颜色id喜欢颜色性别1绿女2蓝男3粉女4绿男对于姓别女分类而言,数据如
- AI编程赋能Python实现零编程决策树算法
智享食事
算法AI编程python
1.概念理解决策树算法是一种监督学习算法,用于分类和回归任务。它是一种基于树结构的模型,通过一系列的决策规则来对数据进行分类或预测。决策树的每个节点代表一个特征,每个分支代表该特征的一个属性值,而每个叶节点表示一个类别或一个数值。决策树的构建过程通常分为以下几个步骤:1.特征选择:选择最佳的特征来作为当前节点的划分特征,通常使用信息增益、基尼指数或者信息熵等准则来选择最优的特征。2.建立树结构:根
- Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory
UnknownBody
LLMDailytransformer深度学习人工智能语言模型
本文是LLM系列文章,针对《BeyondScalingLaws:UnderstandingTransformerPerformancewithAssociativeMemory》的翻译。超越缩放定律:用联想记忆理解Transformer性能摘要1引言2相关工作3模型4新的能量函数5交叉熵损失6实验结果7结论摘要增大Transformer模型的大小并不总是能够提高性能。这种现象不能用经验缩放定律来解
- 机器学习和线性回归、softmax回归
小名叫咸菜
人工智能线性回归
监督学习监督学习(supervisedlearning)擅⻓在“给定输⼊特征”的情况下预测标签。每个“特征-标签”对都称为一个样本(example)。我们的目标是生成一个模型,能够将任何输⼊特征映射到标签(即预测)。回归——平方误差损失函数回归(regression)是最简单的监督学习任务之一。分类——交叉熵样本属于“哪一类”的问题称为分类问题回归是训练一个回归函数来输出一个数值;分类是训练一个分
- 互信息的定义与公式
亲持红叶
信息论相关机器学习人工智能
互信息定义公式从条件熵中我们知道,当获取的信息和要研究的食物”有关系时“,这些信息才能帮助我们消除不确定性。如何衡量获取信息和要研究事物“有关系”呢?比如常识告诉我们,一个随机事件“今天深圳下雨”和另一个随机事件“过去24小时深圳空气湿度”相关性很大,但是相关性到底有多大?怎么衡量?再比如“过去24小时深圳空气湿度”似乎就和“北京天气”相关性不大。香农在信息论中提出”互信息“的概念作为两个随机事件
- 给我通俗易懂地讲一下损失函数与正则化
利万国潮科技 A9.36(asi智神版)
经验分享
我用最生活化的比喻来解释这两个关键概念---###**1.损失函数:考试得分计算器****场景**:你是个教练,训练学生投篮-**核心作用**:每次投篮训练后,自动算出学生的「犯错分数」-**举个栗子**:-**均方误差(MSE)**:记录每次投篮偏离篮筐的距离(比如差30cm记0.3分,差50cm记0.5分),最后算平均分-**交叉熵损失**:专用于选择题考试(比如识别猫狗图片),答错一题扣2分
- 概率图模型家族(HMM、MaxEnt、MEMM和CRF)
ErbaoLiu
自然语言处理&大模型机器学习&大模型概率图概率图模型贝叶斯网络隐马尔科夫模型最大熵模型条件随机场
目录概率图(ProbabilisticGraphical)有向概率图无向概率图隐马尔科夫模型(HMM)最大熵模型(MaxEnt)最大熵马尔科夫模型(MEMM)条件随机场(ConditionalRandomField)一般CRF一般CRF参数化线性链CRF线性链CRF参数化总结简单应用——基于CRF地名识别隐马尔科夫模型(HiddenMarkovModel,HMM)、最大熵模型(MaximumEnt
- 机器学习·逻辑回归
AAA顶置摸鱼
python深度学习机器学习逻辑回归人工智能
前言逻辑回归虽然名称中有“回归”,但实际上用于分类问题。基于线性回归的模型,通过使用逻辑函数(如Sigmoid函数)将线性组合的结果映射到0到1之间的概率值,用于表示属于某个类别的可能性。一、逻辑回归vs线性回归特性逻辑回归线性回归任务类型分类(二分类为主)回归(预测连续值)输出范围(0,1)(概率值)(-∞,+∞)核心函数Sigmoid函数线性函数损失函数对数损失函数(交叉熵)均方误差(MSE)
- 基于计算图的Softmax层反向传播推导
KaiMing Zhu
深度学习反向传播
0.前言经朋友推荐,近日阅读斋藤康毅先生编写的《深度学习入门·基于Python的理论与实现》,书本十分通俗易懂,在Chapter5——反向传播部分,作者以计算图方式给出了Sigmoid函数,全连接层的反向传播过程,但是在给出Softxmax层的反向传播推导过程的时候,将Softmax函数与交叉熵计算函数直接相连,视为同一个层次,并且给出这个层次的反向传播计算图推导,这篇文章主要关注于两点:将Sof
- AGI方向研究
微醺欧耶
agi
要成为一名合格的AGI(通用人工智能)实习生,你需要具备跨学科的知识体系、扎实的技术能力以及前沿研究视野。以下是基于你当前基础的能力扩展方向、关键研究领域以及未来发展的详细分析:---###**一、AGI实习生需具备的核心能力**####1.**数学与理论基础**-**数学基础**:线性代数(矩阵运算、特征值)、概率统计(贝叶斯理论、分布模型)、微积分(梯度优化)、信息论(熵、KL散度)。-**计
- torch.nn.CrossEntropyLoss()的一些小细节(原理和数学,softmax与dim,ignore_index,报错:0D or 1D target tensor expecte)
老肝犯
人工智能深度学习python机器学习神经网络
目录关于torch.nn.CrossEntropyLoss()数学原理关于熵数学公式pytorch中的torch.nn.CrossEntropyLoss()torch.nn.CrossEntropyLoss()交叉熵函数的使用类别索引代码示例结果关于ignore_index类别概率(独热编码属于此类)代码示例结果和数学公式之间的关系代码展示结果关于报错提示0Dor1Dtargettensorexp
- 交叉熵和它的朋友
Jamence
AI数学知识人工智能语言模型chatgpt
交叉熵交叉熵衡量两个概率分布PPP和QQQ的差异,定义为:H(P,Q)=−∑iP(i)logQ(i)H(P,Q)=-\sum_{i}P(i)\logQ(i)H(P,Q)=−∑iP(i)logQ(i)其中,P(i)P(i)P(i)是真实分布,Q(i)Q(i)Q(i)是预测分布。交叉熵与熵的关系熵用于衡量随机变量的不确定性,定义为:H(P)=−∑iP(i)logP(i)H(P)=-\sum_{i}
- 软件熵:AI如何平衡系统的复杂性与可维护性
前端
软件开发的世界,充满了挑战。随着项目规模的扩大和功能的迭代,软件系统不可避免地会走向复杂,如同宇宙的熵增一般,这就是所谓的“软件熵”。软件熵的增加会导致代码难以理解、维护成本飙升,最终影响软件的质量和用户体验。如何有效对抗软件熵,提升软件开发效率和可维护性,成为了摆在开发者面前的一道难题。而近年来兴起的AI写代码工具,例如ScriptEcho,为我们提供了一种全新的解决方案。对抗软件熵的挑战:传统
- 信息熵(entropy)定义公式的简单理解
xiongxyowo
杂文划水
首先公式长这样:H(X)=−∑i=1np(xi)logp(xi)H(X)=-\sum_{i=1}^{n}p\left(x_{i}\right)\logp\left(x_{i}\right)H(X)=−i=1∑np(xi)logp(xi)PxiP_{x_{i}}Pxi表示随机事件X为xix_{i}xi的概率。这里直接给出一些结论。对于某一事件,其发生的概率越小,那么其信息量越大;发生的概率越大,那
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
知识鱼丸
machinelearning机器学习
自定义数据集:继承torch.utils.data.Dataset类创建自定义数据集,并重写__len__和__getitem__方法。定义逻辑回归模型:继承nn.Module类,定义一个线性层,并在forward方法中应用sigmoid激活函数。训练模型:使用二元交叉熵损失函数BCELoss和随机梯度下降优化器SGD进行训练。保存模型:使用torch.save保存模型的参数。加载模型并预测:加载
- 智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法神经网络人工智能
智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割文章目录智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割1.天鹰算法2.PCNN网络3.实验结果4.参考文献5.Matlab代码摘要:本文利用天鹰算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。1.天鹰算法天鹰算法原理请参考:https://blog.csdn.net/u011835903/
- 隐马尔可夫模型(Hidden Markov Model, HMM) 和 最大熵马尔可夫模型(Maximum Entropy Markov Model, MEMM)
苏西月
人工智能
1.HMM(隐马尔可夫模型)HMM是生成式模型(GenerativeModel)HMM通过建模整个联合概率分布P(X,Y)P(X,Y)P(X,Y)来进行序列标注,其中:X=(x1,x2,...,xn)X=(x_1,x_2,...,x_n)X=(x1,x2,...,xn)是观测序列(例如一个句子中的单词)。Y=(y1,y2,...,yn)Y=(y_1,y_2,...,y_n)Y=(y1,y2,...
- LAMMPS实操系列(四): 高熵合金FCC-CoCrCuFeNi的退火模拟
测试狗科研
科研测试材料测试统一建模语言
我们前几期文章内容详细介绍了通过LAMMPS程序进行大量FCC-CoCrCuFeNi高熵合金建模与最稳定结构的筛选,并最终赛选出了我们所建1000个模型中能量最小也就是最稳定的结构。本章我们将继续通过LAMMPS程序对我们筛选出来的最稳定结构进行退火处理。退火是一种对材料的热处理工艺,指的是将材料缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却。其目的是降低材料的残余应力,减少变形与裂纹倾向,
- Day29(补)-【AI思考】-精准突围策略——从“时间贫困“到“效率自由“的逆袭方案
一个一定要撑住的学习者
#AI深度思考学习方法人工智能unity游戏引擎
文章目录精准突围策略——从"时间贫困"到"效率自由"的逆袭方案**第一步:目标熵减工程(建立四维坐标)**与其他学习方法的结合**第二步:清华方法本土化移植**与其他工具对比**~~第三步:游戏化改造方案~~****第四步:环境重塑工程****第五步:技术杠杆矩阵****第六步:风险对冲策略**可行性验证模型甘特图OKR看板精准突围策略——从"时间贫困"到"效率自由"的逆袭方案让思想碎片重焕生机的
- 决策树算法总结(上:ID3,C4.5决策树)
陈小虾
机器学习ID3决策树决策树
文章目录一、决策树原理1.1决策树简介1.2基本概念二、数学知识2.1信息熵2.2条件熵:2.3信息增益三、ID3决策树3.1特征选择3.2算法思路3.3算法不足四、C4.5决策树算法4.1处理连续特征4.2C4.5决策树特征选取4.3处理缺失值4.4过拟合问题五、决策树C4.5算法的不足决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件
- 深度学习中交叉熵函数的导数:(极简)
洪小帅
深度学习人工智能神经网络python
文章目录前言一.交叉熵函数的导数二.Z,y为有n条数据的矩阵前言另一个博主有更详细的推导https://blog.csdn.net/chaipp0607/article/details/101946040一.交叉熵函数的导数softmax:令一条数据最后的输出为[z1,z2,z3,z4,…,z10],这里令输出层的神经元数量为10pi=ezi∑j=110ezjpi=\frac{e^{z_i}}{\
- 智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法神经网络人工智能
智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割文章目录智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割1.堆优化算法2.PCNN网络3.实验结果4.参考文献5.Matlab代码摘要:本文利用堆优化算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。1.堆优化算法堆优化算法原理请参考:https://blog.csdn.net/u0118
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默