- 基于社交网络算法优化的二维最大熵图像分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法php开发语言
智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码文章目录智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码1.前言2.二维最大熵阈值分割原理3.基于社交网络优化的多阈值分割4.算法结果:5.参考文献:6.Matlab代码摘要:本文介绍基于最大熵的图像分割,并且应用社交网络算法进行阈值寻优。1.前言阅读此文章前,请阅读《图像分割:直方图区域划分及信息统计介绍》htt
- 神经网络-损失函数
红米煮粥
神经网络人工智能深度学习
文章目录一、回归问题的损失函数1.均方误差(MeanSquaredError,MSE)2.平均绝对误差(MeanAbsoluteError,MAE)二、分类问题的损失函数1.0-1损失函数(Zero-OneLossFunction)2.交叉熵损失(Cross-EntropyLoss)3.合页损失(HingeLoss)三、总结在神经网络中,损失函数(LossFunction)扮演着至关重要的角色,它
- 自信
净域
今天我打击了某人的自信我的自信回来了损有余而补不足不得不说我喜欢这个特殊的正能量不是会放大缩小而是类似熵平衡的那种奇怪的平衡
- 几率odds与逻辑回归
元气小地瓜
https://www.jianshu.com/p/aa73938f32ee几率odds从Odds角度理解LogisticRegression模型的参数13December20151.引言无论在学术界,还是在工业界,LogisticRegression(LR,逻辑回归)模型[1]是常用的分类模型,被用于各种分类场景和点击率预估问题等,它也是MaxEntropy(ME,最大熵)模型[2],或者说So
- 2019-04-04
凤凰未涅槃
《小王子》里是怎么理解爱的,它说是驯养,什么叫做驯养?这个词我觉得很多人都不太明白,反正当时我不太理解这个词,我对它的理解,所谓驯养就是精神的连接,你跟这个人之间建立的精神的连接。什么叫做精神的连接?也许你们不是血缘家族,但从此以后你们是精神家族,他是你的家人,他是你的精神家族里的那个人,你们享用的是共同的精神上的血液,说到底还是不离不弃。精神一旦接通了以后就像血管的血液接通一样,不是想断就能断的
- 毕设项目 基于特征熵值分析的网站分类系统实现(源码+论文)
iuidfds
毕业设计毕设
文章目录0项目说明1研究目的2研究方法3研究结论4各模块介绍4.1爬虫模块功能与技术4.2网页处理模块功能与技术4.3特征提取与文本特征表示模块功能与技术4.4分类器模块功能与技术5项目源码6论文目录7最后0项目说明基于特征熵值分析的网站分类系统实现提示:适合用于课程设计或毕业设计,工作量达标,源码开放1研究目的本设计对KNN算法的缺陷产生原因进行详细地分析,并针对缺陷对算法进行了引入属性熵值等一
- 【机器学习】4 ——熵
qq_43507078
我的机器学习机器学习人工智能
机器学习4——熵文章目录机器学习4——熵前言前言熵衡量随机变量不确定性,由克劳德·香农(ClaudeShannon)在1948年提出,称为香农熵。反映了一个系统中信息的混乱程度或信息量。其定义为:H(P)=−∑xP(x)logP(x)H(P)=-\sum_{x}^{}P(x)logP(x)H(P)=−x∑P(x)logP(x)其中:X是一个随机变量,它有种可能的取值P(x)是X取值为x的概率。熵H
- 最大熵模型(Maximum entropy model)
Fang Suk
机器学习最大熵模型最大熵最大熵原理指数族分布
最大熵模型(Maximumentropymodel)本文你将知道:什么是最大熵原理,最大熵模型最大熵模型的推导(约束最优化问题求解)最大熵模型的含义与优缺点1最大熵原理最大熵原理:在满足已知约束条件的模型集合中,选择熵最大的模型。熵最大,对应着随机性最大。最大熵首先要满足已知事实,对于其他未知的情况,不做任何的假设,认为他们是等可能性的,此时随机性最大。2最大熵模型最大熵原理是统计学习的一般原理,
- 两种常用损失函数:nn.CrossEntropyLoss 与 nn.TripletMarginLoss
大多_C
人工智能算法python机器学习
两种用于模型训练的损失函数:nn.CrossEntropyLoss和nn.TripletMarginLoss。它们在对比学习和分类任务中各自扮演不同的角色。接下来是对这两种损失函数的详细介绍。1.nn.CrossEntropyLossnn.CrossEntropyLoss是PyTorch提供的交叉熵损失函数,通常用于多分类任务中。它结合了softmax激活函数和负对数似然损失(NegativeLo
- Focal Loss的简述与实现
友人Chi
人工智能机器学习深度学习
文章目录交叉熵损失函数样本不均衡问题FocalLossFocalLoss的代码实现交叉熵损失函数Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)Loss=L(y,\hat{p})=-ylog(\hat{p})-(1-y)log(1-\hat{p})Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)其中p^\hat{p}p^为预测概率大小。此处的交叉
- 数学建模-基于熵权法对Topsis模型的修正
啥都想学点的研究生
矩阵线性代数
topsis模型赋予权重有层次分析法,但层次分析法也有其弊端。层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)针对层次分析法主观性太强的弊端,我们可以采用熵权法给topsis评价模型的各个指标赋权。如何度量信息量的大小,以小明和小王的例子为例:建立信息量I(x)和P(x)之间的关系:信息熵的定义:信息熵越大,信息量是越大还是越小呢
- 2021-07-23——第23课:每个人的生命中需要一名个人成长教练——学习打卡
a吃饭
有几年时间,我都是掉到自己的情绪和事件里面,一直没跳出来。每次鼓起信念去坚持,然后遇到点什么情绪,就被打败了。一段时间后又鼓起勇气去尝试,然后发生了点什么事,就又被打败了。就这样反反复复几年后,我加入了007,7天写一篇的节奏,不快,但是有时候我还是很艰难才坚持下来,但是一年多后,我发现我可以很轻松了。就像现在,我已经做到日更一百多天了。我才发现,我是受到了007里正向人的影响。以前闭门造车,熵不
- 如何利用python实现碰撞原理
加密社
福利资源区块链python开发语言
先看图跑了大概一天这是结果具体是通过BIP39规则生成的种子数据生成完词组后,再根据词组生成姨太地址#生成随机助记词defgenerate_mnemonic():entropy=os.urandom(16)#随机生成16字节熵mnemonic=[]foriinrange(12):#生成12个助记词word_index=int.from_bytes(entropy[i:i+1],'big')%len
- 《逆熵增成长之路》:如何让学到的知识更有价值?
米卡写作
今天继续阅读《逆熵增成长之路》第六章:输入-思考-思考篇,有以下3个感悟,分享给大家。1.什么样的知识值得学?2.如何提高学习效率?3.如何让知识变得更有价值?认真看完,你一定会有所收获。01.什么样的知识值得学?人们常说:你接触什么样的信息,决定你成为什么样的人。这就需要我们控制好自己的信息输入源,包括看什么书、关注什么样的公众号、视频号等。那什么是好的信息输入源呢?《逆熵增成长之路》上提到的4
- 决策树(decision tree)
a15957199647
机器学习数据
决策树就是像树结构一样的分类下去,最后来预测输入样本的属于那类标签。本文是本人的学习笔记,所以有些地方也不是很清楚。大概流程就是1.查看子类是否属于同一个类2.如果是,返回类标签,如果不是,找到最佳的分类子集的特征3.划分数据集4.创建分支节点5.对每一个节点重复上述步骤6.返回树首先我们要像一个办法,怎么来确定最佳的分类特征就是为什么要这么划分子集。一般有三种方法:1.Gini不纯度2.信息熵3
- 心熵,心流,以及复盘3R
热血青年John
今天学到了两个新词汇---心熵和心流。用自己的话来反馈一下。在化学反应体系里,熵值越大,反应越不稳定。大脑思维不集中的时候瞻前顾后,或者思维活跃的有些可怕一会儿思考宇宙尽头人类与黑洞的联系一会儿纠结待会儿吃啥,大脑处于一种混乱状态,意识里可能只有几个念头,但潜意识里可能有多得多的念头在相互碰撞,争夺者你的注意力和大脑的控制权,这时候你的大脑就像是一个热气膨胀的锅,里面的热烫的气体肆意翻腾,照顾之间
- 机器学习和深度学习中常见损失函数,包括损失函数的数学公式、推导及其在不同场景中的应用
早起星人
机器学习深度学习人工智能
目录引言什么是损失函数?常见损失函数介绍3.1均方误差(MeanSquaredError,MSE)3.2交叉熵损失(Cross-EntropyLoss)3.3平滑L1损失(SmoothL1Loss)3.4HingeLoss(合页损失)3.5二进制交叉熵损失(BinaryCross-EntropyLoss)3.6KL散度(KLDivergence)3.7Huber损失(HuberLoss)3.8对比
- BCEWithLogitsLoss
hero_hilog
算法pytorch
BCEWithLogitsLoss是PyTorch深度学习框架中的一个损失函数,用于二元分类问题。它结合了Sigmoid激活函数和二元交叉熵损失(BinaryCrossEntropyLoss),使得在训练过程中更加数值稳定。特点:数值稳定性:直接使用Sigmoid函数后跟BCE损失可能会遇到数值稳定性问题,特别是当输入值非常大或非常小的时候。BCEWithLogitsLoss通过内部使用Logi
- 数学基础 -- 梯度下降算法
sz66cm
算法人工智能数学基础
梯度下降算法梯度下降算法(GradientDescent)是一种优化算法,主要用于寻找函数的局部最小值或全局最小值。它广泛应用于机器学习、深度学习以及统计学中,用于最小化损失函数或误差函数。梯度下降的基本概念梯度下降算法通过以下步骤工作:初始化参数:随机初始化模型的参数(如权重和偏差),也可以用特定的策略初始化。计算损失:对当前模型输出和实际目标值计算损失(如均方误差、交叉熵等)。计算梯度:计算损
- 一屋不扫,何以扫天下
活着不易
“一屋不扫,何以扫天下”这篇作文在我初中的时候就写过,无非是人首先要修炼自己,自身本领强,方能打天下。人应该有自己的良好习惯、行为举止,包括处所洁净........如今看来当时我是懂了道理,却并不深刻。人到中年方知“使熵值减小”的人才能自食其力、有所成就、有所作为。只有不断对自己整合,才能不断进步和接近完美。而熵是什么?熵即混乱度,越混乱熵值就会越大。一个人总是乱糟糟的,毫无计划,东西乱放,衣服乱
- 2019-04-04
风一样帅咸鱼
2019年有哪些前景好市场广的好项目?现在做生意,讲究新奇二字,新奇的生意在市场中更有地位,能够赢得等多的创收,下文推荐几个2019年前景好市场广的几个创业项目。1、吸甲醛无笔墙画吸甲醛无笔墙画是湖南一家公司自主研发,原创设计的一款特色墙面装饰产品。他的施工非常简单,不需要任何的专业绘画技巧,普通人既可作画,是需要2-3小时就能完成。而且图案效果跟手绘相像,画质要更加光滑细腻,价格也更加便宜实惠。
- 2019给吴军老师的第一封信
启航_FLY
吴军老师好:所谓信息的相关性,可以从宏观和微观两个角度思考。从宏观的角度上讲就是要把信息放到系统中去思考。因为在系统中信息的形态是不断变化的,这一点对于使用信息,继而要认识、利用和改变系统的人是十分重要的,信息的形式虽然分散,但基于某种原因,却往往能在有意无意间汇聚成一条条或大或小的脉络,其核心正是老师提到的人类认知世界的本源。物质也好,能量也罢,在历史的演化中都逃不过一个目的性。因为信息负熵迫使
- 王晓芳在增长势能课上提到的这个定律,为什么让全宇宙都绝望?
晓芳聊职场
王晓芳在增长势能课上提到的这个定律,为什么让全宇宙都绝望?企业家最深的痛就是增长乏力---王晓芳授课老师|王晓芳壹创新商学创办人2019年壹创新商学课上,王晓芳教授分享了“熵增定律”,同时以华为为例,讲述了企业管理是如何通过“耗散结构”进行“反熵增”,从而活下去。熵增定律,也叫“热力学第二定律”。这是德国人克劳修斯提出的理论,最初用于揭示事物总是向无序的方向的发展、以及“孤立系统下热量从高温物体流
- 将自己产品化
飞叶灵
今天开始读《纳瓦尔宝典》,文章开篇的核心,人生应该让自己走思维体系和思维模式更新之路。在各个学科中建立自己的思维体系,高数中微积分的思维体系,大物中的熵的思维体系,《道德经》中天人合一,道法自然体系等等。像樊登老师最喜欢提及的认知ABC的看法模型一样,我们需要在各种知识、宗教、娱乐中学习提升自己看到每一件事情发生的产生的影响的看法B,通过看法B把那些不如意的事情看到背后的祝福……这不由让我想起了,
- 基于熵权法对Topsis模型的修正
钰见梵星
数学建模算法
基于熵权法对Topsis模型的修正有n个要评价的对象,m个评价指标的标准化矩阵,可以使用层次分析法给这m个评价指标确定权重∑j=1mωj=1\sum_{j=1}^m{\omega_j}=1j=1∑mωj=1层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)熵权法是一种客观赋权方法依据的原理:指标的变异程度越小,所反映的信息量也越少,
- CEEMDAN(自适应噪声完备集合经验模态分解)+峭度值+能量熵+近似熵+模糊熵+排列熵+多尺度排列熵+样本熵
2301_78492934
人工智能算法深度学习信号处理matlab
CEEMDAN(自适应噪声完备集合经验模态分解)+峭度值+能量熵+近似熵+模糊熵+排列熵+多尺度排列熵+样本熵对序列信号进行CEEMDAN(自适应噪声完备集合经验模态)分解后计算各分解分量峭度值、能量熵、近似熵、模糊熵、排列熵、多尺度排列熵、样本熵,程序实用性高,适合故障诊断、功率预测等研究方向信号处理。并输出分解图、包络图、包络谱图、峭度值图、频谱图。下面对所涉及算法及运行效果进行介绍好的,下面
- SGMD(辛几何分解)+峭度值+能量熵+近似熵+模糊熵+排列熵+多尺度排列熵+样本熵
2301_78492934
人工智能matlab信号处理
对序列信号进行SGMD(辛几何分解)分解后计算各分解分量峭度值、能量熵、近似熵、模糊熵、排列熵、多尺度排列熵、样本熵,程序实用性高,适合故障诊断、功率预测等研究方向信号处理。可输出分解图、包络图、包络谱图、峭度值图、频谱图。从Excel表格中读取,直接替换数据就可以使用,matlab代码SGMD(辛几何模态分解)辛几何模态分解(SGMD)是一种基于辛几何理论的信号分解方法。辛几何是一种数学框架,用
- 蓝桥杯刷题--python-9(2023填空题2)
芝士小熊饼干
l蓝桥杯刷题python蓝桥杯python
001串的熵-蓝桥云课(lanqiao.cn)importmathn=23333333foriinrange(1,n>>1):j=n-ia=-(i/n)*(math.log2(i/n))*i-(j/n)*(math.log2(j/n))*ja=round(a,4)ifa==11625907.5798:print(i)break0求和-蓝桥云课(lanqiao.cn)n=20230408print(
- 4D习书-第十四章 人们需要被包融的感觉
明心悦己
本章主要讲述了人们为什么需要包融和包融的好处。A.我的关注点马斯洛的需求层次理论说明人们在感到被感激和包融之前,不可能向更高层的任务(解决问题或者进行创造)迈进。最好的说服是用上耳朵,因为人们需要被聆听的感觉。M.情绪和内心独白的确是这样的,如果人们没有感觉到舒服,就会有精神熵,会限制他们的创造性。B.让自己更好的行动耐心听老公说话,除了向他表示感激,更多去倾听、包融他的行为,让他在家里感觉到舒服
- 追求规则生活的自由——今天开始第一天日更
谷气质
已经体验不规则生活体验了好久,不规则的生活让我觉得自由,那是之前,经历过一段时间大概是辛苦的工作以后吧,现在几乎已经忘了那时的忙碌。现在更加体会到其实那样规则的生活不一定代表不自由,这样混乱不规则的生活也不一定就是自由,射手座的人对自由要求比较多。规则的生活至少让我不用去想那么多。只是按部就班的做事就好,当打乱之前生活的节奏,每天不知道该干什么的时候,反而会大脑和心都处于增熵过程中,需要耗费精力。
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默