借助多项式的知识来同时证明上述两条性质(同次项系数相等原理)
对于
f ( λ ) = ∣ λ E − A ∣ = ∣ λ − a 11 − a 12 ⋯ − a 1 n − a 21 λ − a 22 ⋯ − a 2 n ⋮ ⋮ ⋮ − a n 1 − a n 2 ⋯ λ − a n n ∣ f(\lambda)=|\lambda{E}-A|= \begin{vmatrix} \lambda-a_{11}& -a_{12}& \cdots&-a_{1n} \\ -a_{21}& \lambda-a_{22}& \cdots&-a_{2n} \\ \vdots& \vdots& &\vdots \\ -a_{n1}& -a_{n2}& \cdots&\lambda-a_{nn} \\ \end{vmatrix} f(λ)=∣λE−A∣= λ−a11−a21⋮−an1−a12λ−a22⋮−an2⋯⋯⋯−a1n−a2n⋮λ−ann
f ( λ ) f(\lambda) f(λ)行列式展开后有 n ! n! n!项(未合并化简同类项前),把它们记为 θ k , k = 1 , 2 , ⋯ , n ! \theta_k,k=1,2,\cdots,n! θk,k=1,2,⋯,n!, θ k = ( − 1 ) τ ( p k ) ∏ i = 1 n a i , j i \theta_k=(-1)^{\tau(p_k)}\prod_{i=1}^{n}a_{i,j_i} θk=(−1)τ(pk)∏i=1nai,ji,其中 p k p_k pk是第 k k k个 n n n级排列 ( j 1 , ⋯ , j n ) (j_1,\cdots,j_n) (j1,⋯,jn)
将合并同类相(多项式的一般形式): f ( λ ) f(\lambda) f(λ)= ∑ i = 0 n a i λ i \sum_{i=0}^{n}a_i\lambda^{i} ∑i=0naiλi <1>
<1>
式中有1项是由主对角线元素相乘的积,是 n n n次项,同时也是最高次项),把它记为
其余项至多含有对角线元素的 n − 2 n-2 n−2个元素(次高项的次数为 n − 2 n-2 n−2)
因此,容易确定<1>
中 a n , a n − 1 a_n,a_{n-1} an,an−1都是由 θ d \theta_{d} θd所确定的
现在,我们只对 ξ \xi ξ这一项感兴趣,由多项式相关知识,容易做出以下推导
<2>
另一方面,设 λ 1 , ⋯ , λ n \lambda_1,\cdots,\lambda_n λ1,⋯,λn是 f ( λ ) f(\lambda) f(λ)的 n n n个特征值(根)
对于 n n n次多项式 f ( λ ) f(\lambda) f(λ),他有 n n n个复根,由余式定理,可以因式分解写成如下形式
f ( λ ) = ( λ − λ 1 ) ( λ − λ 2 ) ⋯ ( λ − λ n ) f(\lambda)=(\lambda-\lambda_1)(\lambda-\lambda_2)\cdots(\lambda-\lambda_n) f(λ)=(λ−λ1)(λ−λ2)⋯(λ−λn)
f ( λ ) f(\lambda) f(λ)= ∏ i = 1 n ( λ − λ i ) \prod_{i=1}^{n}(\lambda-\lambda_i) ∏i=1n(λ−λi)= λ n − ( ∑ i = 1 n λ i ) λ n − 1 + ⋯ + ∏ i = 1 n ( − λ i ) \lambda^n-(\sum_{i=1}^{n}\lambda_i)\lambda^{n-1}+\cdots+\prod_{i=1}^{n}(-\lambda_i) λn−(∑i=1nλi)λn−1+⋯+∏i=1n(−λi)<3>
<2>,<3>
中的
设 α , A , λ \alpha,\bold{A},\lambda α,A,λ满足 A α = λ α \bold{A}\alpha=\lambda{\alpha} Aα=λα,则:
证明:
对 A α = λ α \bold{A}\alpha=\lambda{\alpha} Aα=λα同乘以 k k k,
对 A α = λ α \bold{A}\alpha=\lambda\alpha Aα=λα两边同时左乘 A \bold{A} A
方阵 A \bold{A} A的转置 A T \bold{A}^T AT的特征值和 A \bold{A} A的特征值相同
A : f ( λ ) = ∣ λ E − A ∣ \bold{A}:f(\lambda)=|\lambda{E}-\bold{A}| A:f(λ)=∣λE−A∣
A T : f ( λ ) = ∣ λ E − A T ∣ = ∣ ( λ E ) T − A T ∣ = ∣ ( λ E − A ) T ∣ = ∣ λ E − A ∣ \bold{A}^T:f(\lambda)=|\lambda{E}-\bold{A}^T|=|(\lambda{E})^T-\bold{A}^T|=|(\lambda{E}-\bold{A})^T|=|\lambda{E}-\bold{A}| AT:f(λ)=∣λE−AT∣=∣(λE)T−AT∣=∣(λE−A)T∣=∣λE−A∣
可见, A , A T \bold{A},\bold{A}^T A,AT具有相同的特征方程,因此特征值一定相同
但是它们的特征向量不一定相同
设 p ( x ) = ∑ i = 0 m a i x i = ∑ i = 0 m a m − i x m − i p(x)=\sum\limits_{i=0}^{m}a_{i}x^i=\sum\limits_{i=0}^{m}a_{m-i}x^{m-i} p(x)=i=0∑maixi=i=0∑mam−ixm−i; λ , A , α \lambda,\bold{A},\alpha λ,A,α满足 A α = λ α \bold{A}\alpha=\lambda\alpha Aα=λα,则 p ( A ) α = p ( λ ) α p(\bold{A})\alpha=p(\lambda)\alpha p(A)α=p(λ)α
证明:
p ( A ) α = ∑ i = 0 m a i A i α p(\bold{A})\alpha=\sum\limits_{i=0}^{m}a_{i}\bold{A}^i\alpha p(A)α=i=0∑maiAiα= ∑ i = 0 m a i λ i α \sum\limits_{i=0}^{m}a_{i}\lambda^i\alpha i=0∑maiλiα,而 p ( λ ) = ∑ i = 0 m a i λ i p(\lambda)=\sum\limits_{i=0}^{m}a_{i}\lambda^i p(λ)=i=0∑maiλi;从而 p ( λ ) α = ∑ i = 0 m a i λ i α p(\lambda)\alpha=\sum\limits_{i=0}^{m}a_{i}\lambda^i\alpha p(λ)α=i=0∑maiλiα
因此 p ( A ) α = p ( λ ) α p(\bold{A})\alpha=p(\lambda)\alpha p(A)α=p(λ)α
对特征值的个数 m m m作数学归纳法
当 m = 1 m=1 m=1时, α 1 ≠ 0 \bold{\alpha_1\neq{0}} α1=0, A 0 : α 1 A_0:\alpha_1 A0:α1仅含有一个非零向量的向量组线性无关
设 m = k − 1 m=k-1 m=k−1时结论成立,即 A k − 1 : α 1 , ⋯ , α k − 1 A_{k-1}:\alpha_1,\cdots,\alpha_{k-1} Ak−1:α1,⋯,αk−1线性无关
这里的思路是假设 m = k − 1 m=k-1 m=k−1时结论能推出 m = k m=k m=k时也成立
设向量组 A k : α 1 , ⋯ , α k A_{k}:\alpha_1,\cdots,\alpha_k Ak:α1,⋯,αk,其线性相关性判定式 ∑ i = 1 k x i α i = 0 \sum_{i=1}^{k}x_i\alpha_i=\bold{0} ∑i=1kxiαi=0(1)
用 A \bold{A} A左乘(1)
式两边,得 ∑ i = 1 k x i A α i = 0 \sum_{i=1}^{k}x_i\bold{A}\alpha_i=\bold{0} ∑i=1kxiAαi=0(2)
由 A α i = λ α i \bold{A}\alpha_i=\lambda{\alpha_i} Aαi=λαi代入(2)
得 ∑ i = 1 k x i λ i α i = 0 \sum_{i=1}^{k}x_i\lambda_i\alpha_i=\bold{0} ∑i=1kxiλiαi=0(3)
作 ( 3 ) − λ k ( 2 ) (3)-\lambda_k(2) (3)−λk(2)得: ∑ i = 1 k x i ( λ i − λ k ) α i = 0 \sum_{i=1}^{k}x_i(\lambda_i-\lambda_k)\alpha_i=\bold{0} ∑i=1kxi(λi−λk)αi=0,等式左侧展开式得最后一项为0,化简后即 ∑ i = 1 k − 1 x i ( λ i − λ k ) α i = 0 \sum_{i=1}^{k-1}x_i(\lambda_i-\lambda_k)\alpha_i=\bold{0} ∑i=1k−1xi(λi−λk)αi=0(4)
由归纳假设,(4)
中的表出系数 γ i = x i ( λ i − λ k ) = 0 \gamma_i=x_i(\lambda_i-\lambda_k)=0 γi=xi(λi−λk)=0, i = 1 , ⋯ , k − 1 i=1,\cdots,k-1 i=1,⋯,k−1
(1)
可知 x k α k = 0 x_k\alpha_k=\bold{0} xkαk=0,而 α k ≠ 0 \alpha_k\neq{\bold{0}} αk=0,所以 x k = 0 x_k=0 xk=0(1)
中表出系数 x i = 0 , i = 1 , ⋯ , k x_i=0,i=1,\cdots,k xi=0,i=1,⋯,k,即 A k : α 1 , ⋯ , α k A_k:\alpha_1,\cdots,\alpha_k Ak:α1,⋯,αk线性无关由归纳法原理,命题成立
Note:这个归纳法证明中,最重要的一个步骤是等式(4)
的构造过程,它将 m = k m=k m=k时的命题和 m = k − 1 m=k-1 m=k−1时的命题(归纳假设条件)联系起来
记特征值 λ i \lambda_i λi, i = 1 , ⋯ , m i=1,\cdots,m i=1,⋯,m的线性无关特征向量组为 A i : α i 1 , α i 2 , ⋯ , α i s i A_i:\alpha_{i1},\alpha_{i2},\cdots,\alpha_{is_i} Ai:αi1,αi2,⋯,αisi A i A_i Ai相当于方程 ( λ i E − A ) x = 0 (\lambda_iE-\bold{A})x=0 (λiE−A)x=0的一个基础解系),则这些向量组的合并向量组 B : A 1 , ⋯ , A n B:A_1,\cdots,A_n B:A1,⋯,An依然线性无关
也即是说,属于各个特征值的线性无关特征向量合在一起构成的向量组依然线性无关
证明:
对特征值个数 m m m作数学归纳法,过程和本节定理得证明过程类似
当 m = 1 m=1 m=1时,结论显然成立 S 3 = S 1 S_3=S_1 S3=S1是线性无关的
设 m = k m=k m=k时结论成立,
当 m = k + 1 m=k+1 m=k+1时,设 ∑ i = 1 k + 1 ∑ j = 1 s i x i j α i j = 0 \sum_{i=1}^{k+1}\sum_{j=1}^{s_i}x_{ij}\alpha_{ij}=\bold{0} ∑i=1k+1∑j=1sixijαij=0<1>
对<1>
两边同时左乘 A \bold{A} A: ∑ i = 1 k + 1 ∑ j = 1 s i x i j A α i j = 0 \sum_{i=1}^{k+1}\sum_{j=1}^{s_i}x_{ij}\bold{A}\alpha_{ij}=\bold{0} ∑i=1k+1∑j=1sixijAαij=0<2>
将 A λ i = λ i α i j \bold{A}\lambda_i=\lambda_i\alpha_{ij} Aλi=λiαij, i = 1 , ⋯ , s i i=1,\cdots,s_i i=1,⋯,si,代入<2>
得: ∑ i = 1 k + 1 ∑ j = 1 s i x i j λ i α i j = 0 \sum_{i=1}^{k+1}\sum_{j=1}^{s_i}x_{ij}\lambda_{i}\alpha_{ij}=\bold{0} ∑i=1k+1∑j=1sixijλiαij=0<3>
<3.1>
对<1>
两边同时乘以 λ k + 1 \lambda_{k+1} λk+1得: ∑ i = 1 k + 1 ∑ j = 1 s i x i j λ k + 1 α i j = 0 \sum_{i=1}^{k+1}\sum_{j=1}^{s_i}x_{ij}\lambda_{k+1}\alpha_{ij}=\bold{0} ∑i=1k+1∑j=1sixijλk+1αij=0<4>
展开<4.1>
∑ i = 1 k + 1 ∑ j = 1 s i x i j λ k + 1 α i j = ∑ i = 1 k ∑ j = 1 s i x i j λ k + 1 α i j + ∑ j = 1 s k + 1 x k + 1 , j λ k + 1 α k + 1 , j = 0 \sum_{i=1}^{k+1}\sum_{j=1}^{s_i}x_{ij}\lambda_{k+1}\alpha_{ij} =\sum_{i=1}^{k}\sum_{j=1}^{s_i}x_{ij}\lambda_{k+1}\alpha_{ij} +\sum_{j=1}^{s_{k+1}}x_{k+1,j}\lambda_{k+1}\alpha_{k+1,j} =\bold{0} i=1∑k+1j=1∑sixijλk+1αij=i=1∑kj=1∑sixijλk+1αij+j=1∑sk+1xk+1,jλk+1αk+1,j=0
作<3>-<4>
,即<3.1>-<4.1>
得
<3>
左边展开式中 i = k + 1 i=k+1 i=k+1的被化简
由归纳假设, ∑ i = 1 k ∑ j = 1 s i γ i j α i j = 0 \sum_{i=1}^{k}\sum_{j=1}^{s_i} \gamma_{ij}\alpha_{ij} =\bold{0} ∑i=1k∑j=1siγijαij=0其中 γ i j = 0 \gamma_{ij}=0 γij=0,所以, γ i j = x i j ( λ i − λ k + 1 ) = 0 \gamma_{ij}=x_{ij}(\lambda_i-\lambda_{k+1})=0 γij=xij(λi−λk+1)=0, i = 1 , ⋯ , k i=1,\cdots,k i=1,⋯,k, j = 1 , ⋯ , s i j=1,\cdots,s_{i} j=1,⋯,si
由 λ i , i = 1 , ⋯ , m \lambda_i,i=1,\cdots,m λi,i=1,⋯,m的互异性可知, λ i − λ k + 1 ≠ 0 \lambda_i-\lambda_{k+1}\neq{0} λi−λk+1=0,所以 x i j = 0 x_{ij}=0 xij=0
代入<1>
得 ∑ j = 1 s k + 1 x k + 1 , j α k + 1 , j = 0 \sum_{j=1}^{s_{k+1}}x_{k+1,j}\alpha_{k+1,j}=\bold{0} ∑j=1sk+1xk+1,jαk+1,j=0
由归纳法原理,结论成立
同一矩阵的同一特征值的特征向量线性组合仍然是矩阵的特征向量
设 α \alpha α是矩阵 A \bold A A属于特征值 λ 0 \lambda_0 λ0的特征向量(用符号语言可以简介的表示为:
设 α 1 , α 2 , A , λ 0 \alpha_1,\alpha_2,\bold A,\lambda_0 α1,α2,A,λ0满足 A α 1 = λ 0 α 1 \bold{A\alpha_1=\lambda_{0}\alpha_1} Aα1=λ0α1; A α 2 = λ 0 α 2 \bold{A\alpha_2=\lambda_0\alpha_2} Aα2=λ0α2,则:
方阵 A \bold{A} A得不同特征值得特征向量之和不是 A \bold{A} A的特征向量
使用反证法来证明
设 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2是 A \bold{A} A的两个不同特征值,即 A p i = λ i p i \bold{A}\bold{p}_i=\lambda_{i}\bold{p}_i Api=λipi, i = 1 , 2 i=1,2 i=1,2
易知 A ( p 1 + p 2 ) = λ 1 p 1 + λ 2 p 2 \bold{A(p_1+p_2)}=\lambda_1{\bold{p}_1}+\lambda_2{\bold{p_2}} A(p1+p2)=λ1p1+λ2p2
设 p 3 = p 1 + p 2 \bold{p_3=p_1+p_2} p3=p1+p2是 A \bold{A} A的特征向量,则应存在 λ \lambda λ使得 A p 3 = λ p 3 \bold{Ap_3=\lambda{p_3}} Ap3=λp3,即 λ 1 p 1 + λ 2 p 2 = λ p 3 \lambda_1{\bold{p}_1}+\lambda_2{\bold{p_2}}=\lambda{\bold{p_3}} λ1p1+λ2p2=λp3
即 ( λ 1 − λ ) p 1 + ( λ 2 − λ ) p 2 = 0 (\lambda_1-\lambda)\bold{p}_1+(\lambda_2-\lambda)\bold{p_2}=\bold{0} (λ1−λ)p1+(λ2−λ)p2=0
由于 p 1 , p 2 \bold{p_1,p_2} p1,p2线性无关,所以 λ i − λ = 0 , i = 1 , 2 \lambda_i-\lambda=0,i=1,2 λi−λ=0,i=1,2,所以 λ 1 = λ 2 = λ \lambda_1=\lambda_2=\lambda λ1=λ2=λ,这与 λ 1 ≠ λ 2 \lambda_1\neq{\lambda_2} λ1=λ2矛盾,所以不存在这样的 λ \lambda λ
所以 p 1 + p 2 \bold{p_1+p_2} p1+p2不是 A \bold{A} A的特征向量
设方阵 A \bold{A} A的特征值 λ 1 , ⋯ , λ m \lambda_{1},\cdots,\lambda_{m} λ1,⋯,λm对,若 λ i \lambda_i λi是一个 k i k_i ki重特征值,那么对应于 λ i \lambda_i λi线性无关特征向量的个数 u i ⩽ k i u_i\leqslant{k_i} ui⩽ki
推论:记 u ( A ) = ∑ u i u(\bold{A})=\sum{u_i} u(A)=∑ui,一个 n n n阶方阵 A \bold{A} A的线性无关特征向量的个数 u ( A ) ⩽ n u(\bold{A})\leqslant{n} u(A)⩽n