keras ”冻结“ 网络层

“冻结”一个层指的是该层将不参加网络训练,即该层的权重永不会更新。在进行fine-tune时我们经常会需要这项操作。 在使用固定的embedding层处理文本输入时,也需要这个技术。

可以通过向层的构造函数传递trainable参数来指定一个层是不是可训练的,如:

frozen_layer = Dense(32,trainable=False)

此外,也可以通过将层对象的trainable属性设为True或False来为已经搭建好的模型设置要冻结的层。 在设置完后,需要运行compile来使设置生效,例如:

x = Input(shape=(32,))
layer = Dense(32)
layer.trainable = False
y = layer(x)

frozen_model = Model(x, y)
# in the model below, the weights of `layer` will not be updated during training
frozen_model.compile(optimizer='rmsprop', loss='mse')

layer.trainable = True
trainable_model = Model(x, y)
# with this model the weights of the layer will be updated during training
# (which will also affect the above model since it uses the same layer instance)
trainable_model.compile(optimizer='rmsprop', loss='mse')

frozen_model.fit(data, labels)  # this does NOT update the weights of `layer`
trainable_model.fit(data, labels)  # this updates the weights of `layer`

只是搬运这些,当做自己的笔记用,具体参考keras文档。

你可能感兴趣的:(keras ”冻结“ 网络层)