傅里叶级数展开及系数项求解

对于一个周期函数 f ( x ) f(x) f(x): 若满足狄利克雷条件,即在一个周期中,只有有限个第一类间断点以及有限个极值点,则这个函数可以展开成傅里叶级数,若这个傅里叶级数处处收敛于 f ( x ) f(x) f(x),则称这个级数是这个函数的傅里叶展开式,即:
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) , x ∈ [ − π , π ] f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infin}(a_{n}\cos{nx}+b_{n}\sin{nx}),\quad x\in[-\pi,\pi] f(x)=2a0+n=1(ancosnx+bnsinnx),x[π,π]
其中:
{ a 0 = 1 π ∫ − π π f ( x ) d x a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x \begin{cases} & a_{0}=\frac{1}{\pi}\int^{\pi}_{-\pi}f(x)dx \\\\ & a_{n}=\frac{1}{\pi}\int^{\pi}_{-\pi}f(x)\cos{nx}dx \\\\ & b_{n}=\frac{1}{\pi}\int^{\pi}_{-\pi}f(x)\sin{nx}dx \end{cases} a0=π1ππf(x)dxan=π1ππf(x)cosnxdxbn=π1ππf(x)sinnxdx

你可能感兴趣的:(数字图像处理)