在kubernetes中,kubelet中内嵌了cadvisor,prometheus对cadvisor指标的拉取时,使用的是kubelet的endpoints,只是metric_path改为/metrics/cadvisor。
kubelet在集成cadvisor的同时,还其添加了namespace、pod、container标签,用于定位它在kubernetes资源中的具体位置。
container_spec_cpu_period{
container="prometheus",
endpoint="https-metrics",
id="/kubepods.slice/kubepods-burstable.slice/kubepods-burstable-pod304f6c86_d20b_45aa_95ad_db5edc2e8b43.slice/cri-containerd-cbde185ec5c5d6ff6928b10e9dc21de7548aec0e0bcbdff25a9ebf80a9fd3adf.scope",
image=“prometheus:latest",
instance=“192.168.0.1:10250",
job="kubelet",
metrics_path="/metrics/cadvisor",
name="cbde185ec5c5d6ff6928b10e9dc21de7548aec0e0bcbdff25a9ebf80a9fd3adf",
namespace="monitoring",
node=“node01",
pod="prometheus-k8s-0",
service="kubelet"} 100000
那么kubelet是如何为cadvisor添加这些标签的,cadvisor中有没有采集这些信息呢?
一.cadvisor的指标标签
为了验证cadvisor自身的采集能力,将cadvisor单独部署到kubernetes,配置其拉取的job=cadvisor,拉取到的指标如下:
container_cpu_usage_seconds_total{
container_env_HOSTNAME="prometheus-k8s-0”,
container_env_KUBERNETES_PORT="tcp://10.233.0.1:443”,
container_env_KUBERNETES_PORT_443_TCP="tcp://10.233.0.1:443”,
container_env_KUBERNETES_PORT_443_TCP_ADDR="10.233.0.1”,
container_env_KUBERNETES_PORT_443_TCP_PORT="443”,
container_env_KUBERNETES_PORT_443_TCP_PROTO="tcp”,
container_env_KUBERNETES_SERVICE_HOST="10.233.0.1”,
…
container_label_io_cri_containerd_kind="container”,
container_label_io_kubernetes_container_name="prometheus”, // 容器名称
container_label_io_kubernetes_pod_name="prometheus-k8s-0”, // pod名称
container_label_io_kubernetes_pod_namespace="monitoring”, // namespace
container_label_io_kubernetes_pod_uid="304f6c86-d20b-45aa-95ad-db5edc2e8b43”,
container_label_maintainer="The Prometheus Authors ”,
...
cpu="cpu00”,
endpoint="http”,
id="/kubepods.slice/kubepods-burstable.slice/kubepods-burstable-pod304f6c86_d20b_45aa_95ad_db5edc2e8b43.slice/cri-containerd-cbde185ec5c5d6ff6928b10e9dc21de7548aec0e0bcbdff25a9ebf80a9fd3adf.scope”,
image=“prometheus:latest”,
instance="10.233.123.70:8080”,
job="cadvisor”,
name="cbde185ec5c5d6ff6928b10e9dc21de7548aec0e0bcbdff25a9ebf80a9fd3adf”,
service="cadvisor"} 709.899183253
可以看到拉取的指标中的label:
container_env_*:
- cadvisor采集了容器内的环境变量信息,并将其添加到指标的label中;
container_label_io_*:
- cadvisor采集了容器的label信息,并将其添加到指标的label中;
- 这些label信息包含了容器的container名称、所在的pod、所在的namespace信息;
也就是说,cadvisor可以采集到容器的container/pod/namespace信息。
那这些信息是从何而来的呢,看cadvisor的代码:
- 对cadvisor采集的指标,使用containerLabelsFunc函数添加额外的标签;
- containerLabelsFunc默认=DefaultContainerLabels;
// cadvisor/metrics/prometheus.go
func NewPrometheusCollector(i infoProvider, f ContainerLabelsFunc, includedMetrics container.MetricSet, now clock.Clock, opts v2.RequestOptions) *PrometheusCollector {
if f == nil {
f = DefaultContainerLabels // 默认的添加标签的函数
}
c := &PrometheusCollector{
infoProvider: i,
containerLabelsFunc: f,
...
}
if includedMetrics.Has(container.CpuUsageMetrics) {
c.containerMetrics = append(c.containerMetrics, []containerMetric{
{
name: "container_cpu_user_seconds_total",
help: "Cumulative user cpu time consumed in seconds.",
valueType: prometheus.CounterValue,
getValues: func(s *info.ContainerStats) metricValues {
return metricValues{
{
value: float64(s.Cpu.Usage.User) / float64(time.Second),
timestamp: s.Timestamp,
},
}
},
},
...
}
return c
}
看一下DefaultContainerLabels函数的实现:
- 对container.spec中的label,添加了container_label_*前缀,这些label将被添加到最终的指标标签中;
- 对container.spec中的env,添加了container_label_env_*前缀,这些label将被添加到最终的指标标签中;
// cadvisor/metrics/prometheus.go
const (
// ContainerLabelPrefix is the prefix added to all container labels.
ContainerLabelPrefix = "container_label_"
// ContainerEnvPrefix is the prefix added to all env variable labels.
ContainerEnvPrefix = "container_env_"
// LabelID is the name of the id label.
LabelID = "id"
// LabelName is the name of the name label.
LabelName = "name"
// LabelImage is the name of the image label.
LabelImage = "image"
)
func DefaultContainerLabels(container *info.ContainerInfo) map[string]string {
set := map[string]string{LabelID: container.Name}
if len(container.Aliases) > 0 {
set[LabelName] = container.Aliases[0]
}
if image := container.Spec.Image; len(image) > 0 {
set[LabelImage] = image
}
for k, v := range container.Spec.Labels {
set[ContainerLabelPrefix+k] = v // container_label_*
}
for k, v := range container.Spec.Envs {
set[ContainerEnvPrefix+k] = v // container_env_*
}
return set
}
最后,再看一下containerInfo的spec中的label和env是什么样子:
"labels":{
"io.kubernetes.container.name":"node-exporter",
"io.kubernetes.pod.name":"node-exporter-gw4qg",
"io.kubernetes.pod.namespace":"monitoring",
"io.kubernetes.pod.uid":"2ac69f2e-cb3c-4e4f-b890-183e457ef891"
},
"env": [
"HOSTNAME=node01",
"KUBERNETES_SERVICE_PORT=443",
"KUBERNETES_PORT_443_TCP=tcp://10.233.0.1:443",
"KUBERNETES_SERVICE_HOST=10.233.0.1",
"KUBERNETES_PORT_443_TCP_PORT=443",
"KUBERNETES_SERVICE_PORT_HTTPS=443",
"KUBERNETES_PORT=tcp://10.233.0.1:443",
"KUBERNETES_PORT_443_TCP_ADDR=10.233.0.1",
...
],
cadvisor对原始的label和env添加了前缀,返回给prometheus:
对label:
- 原始的label=“io.kubernetes.container.name”,加上前缀,变成:container_label_io_kubernetes_container_name;
对env:
- 原始的env=HOSTNAME,加上前缀,变成:container_env_HOSTNAME;
二. kubelet集成cadvisor的指标标签
kubelet在集成cadvisor时,自定义了为指标额外添加标签的逻辑containerLabelsFunc,没有使用DefaultContainerLabels。
kubelet传入的函数=containerPrometheusLabelsFunc:
// kubernetes/pkg/kubelet/server/server.go
r.RawMustRegister(metrics.NewPrometheusCollector(prometheusHostAdapter{s.host}, containerPrometheusLabelsFunc(s.host), includedMetrics, clock.RealClock{}, cadvisorOpts))
containerPrometheusLabelsFunc函数的代码实现如下:
- 从containerInfo.Spec.label中,提取io.kubernetes.pod.name的值,作为pod名称的label-value;
- 从containerInfo.Spec.label中,提取io.kubernetes.pod.namespace的值,作为namespace名称的label-value;
- 从containerInfo.Spec.label中,提取io.kubernetes.container.name的值,作为container名称的label-value;
// kubernetes/pkg/kubelet/server/server.go
func containerPrometheusLabelsFunc(s stats.Provider) metrics.ContainerLabelsFunc {
// containerPrometheusLabels maps cAdvisor labels to prometheus labels.
return func(c *cadvisorapi.ContainerInfo) map[string]string {
// Prometheus requires that all metrics in the same family have the same labels,
// so we arrange to supply blank strings for missing labels
var name, image, podName, namespace, containerName string
if len(c.Aliases) > 0 {
name = c.Aliases[0]
}
image = c.Spec.Image
if v, ok := c.Spec.Labels[kubelettypes.KubernetesPodNameLabel]; ok { // io.kubernetes.pod.name
podName = v
}
if v, ok := c.Spec.Labels[kubelettypes.KubernetesPodNamespaceLabel]; ok { // io.kubernetes.pod.namespace
namespace = v
}
if v, ok := c.Spec.Labels[kubelettypes.KubernetesContainerNameLabel]; ok { // io.kubernetes.container.name
containerName = v
}
// Associate pod cgroup with pod so we have an accurate accounting of sandbox
if podName == "" && namespace == "" {
if pod, found := s.GetPodByCgroupfs(c.Name); found {
podName = pod.Name
namespace = pod.Namespace
}
}
set := map[string]string{
metrics.LabelID: c.Name,
metrics.LabelName: name,
metrics.LabelImage: image,
"pod": podName, // pod名称
"namespace": namespace, // namespace
"container": containerName, // container名称
}
return set
}
}
三. 总结
cadvisor通过容器的接口,查询到spec.labels的信息(包含container/pod/namespace)后,
对于普通的cadvisor:
- 使用默认的DefaultContainerLabels函数添加标签,为label添加container_label_前缀;
对于kubelet集成的cadvisor:
- 使用自定义的containerPrometheusLablesFunc函数添加标签,将原始的标签变为container=/pod=/namespace=;